LOC section meeting Geneva, 7 June 2005

Trip report from PAC2005

Stefano Redaelli

CERN AB-ABP

Table of contents

- Contribution of LHC collimation team
- Material properties under radiation results of tests at RHIC
- Collimation at J-PARC
- Energy deposition studies for ions at GSI
- Dynamic effect of SC magnets at Tevatron
- Others

General remarks

- **Big** conference Difficult to follow interesting presentation: 2 x 3 parallel sessions (oral + poster)!
- Three open positions at Elettra (IT): RF + accelerator physics

→ K. Karantzoulis (karantzoulis@elettra.trieste.it)

• PhD in material tests at RHIC for LHC collimator material tests (N. Simos, H. Kirk)

Contributions of the LHC collimation team

G Robert-Demolaize *et al.* Tracking tool for cleaning inefficiency and beam losses R Assmann *et al.* Results from prototyping and beam tests Sound/vibration measurements at the TT40 S. Redaelli et al. robustness test A. Bertarelli at al. Impedance measurements at the SPS H. Burkhardt *et al.* Thermo-mechanical model of the collimator FLUKA team Energy deposition studies for IR7 Radio-protection issues SR-RP team

H. Kirk *et al.*: Post-irradiation properties of candidate materials for high power targets (ROAD003)

Proton Beam Footprint (1 o)

Figure 3: Arrangement of one layer of thermal and tensile test specimens during proton irradiation.

Figure 4: Expansion vs. temperature of CC composites: a) expansion along one of the fiber axes; b) expansion at 1.i² to the fiber axes.

Irradiated material lose mechanical properties if irradiated (fraction of DPA enough to change expansion coefficient). <u>However</u>, after thermal cycles $(\Delta T \sim 600^{\circ}C)$ they recover the previous behaviour!

Interesting for the collimator materials! Collaboration already started! S. Redaelli, LOC meeting

Collimation studies at the Japan Proton Accelerator Complex (J-PARC)

(3 GeV proton beams; Power ~ 1.2 kW)

- K. Yamamoto et al.: Development of a collimation system
- M. Kinsho et al.: Irradiation experiment of collimator key components
 - \rightarrow Stepping motors that can be operated up to 70 MGy

Strong interest in the design of the LHC collimator for future upgrades!

Ion energy deposition studies at GSI (E. Mustafin *et al.*)

- → Comparison between measurements and ²³⁸U beam test (RPPE034)
- \rightarrow Radiation damage to the superconducting dipoles (FPAE075)

Measurement & Codes	Range, mm			
	Fe, 500	Cu, 500	Fe, 950	Cu, 950
Measurement	5.9±0.2	5.3±0.2	14.3±0.4	12.8±0.4
ATIMA	6.1	5.4	14.7	13.4
SRIM	6.5	5.9	16.1	15.2
SHIELD	5.9	5.4	15.1	14.1

Detailed comparisons with estimated quench limits and lifetime of various components

Interest for LHC ion team?

P. Bauer et al.: Advancing in the understanding and operations of superconducting colliders (MOPA001)

- Comprehensive description of experimental results on dynamic effects
- Dynamics behaviour of magnets can be argued from beam measurements?
- Argued that this would not be possible for the LHC less measurements on magnets

Other highlights

F. Pilat	Non-linear optics corrections at RHIC	
P. McIntyre	Tripler upgrade for the LHC Conceptual design of a <i>24 T hybrid dipole</i> for the LHC!	
ILC activities	Formal organization targeted at preparing a technical design report by 2008	
B. Parker	Development of superconducting final focus quadrupoles for future linear collides	
Light source	Section dedicated to worldwide proliferation of light sources (Australia, Shangai, Taiwan, Brazil, Turkey,)	