Progress on $\{\beta, D_x\}$ Beat & Coupling Correction @ LHC Injection

R. Calaga, R. Tomás

O. Bruning, S. Fartoukh, A. Franchi, M. Giovannozzi, Y. Papaphilippou, F. Zimmermann

LOC - Oct 9, 2006

RECAP

- Realistic magnetic errors from MADX error tables
- Observables

 $\Delta \vec{\phi}_x$, $\Delta \vec{\phi}_y$: Indep. of BPM Calibration (FFT, SVD) $\Delta \vec{D}_x$: Calibration Dependent - $\pm 4\%$ (Rad. Steering)

• Specifications:

$$\left\{ \frac{\Delta \beta_x}{\beta_x}, \ \frac{\Delta \beta_y}{\beta_y} \right\}_{peak} < 15\% \quad [\text{Rep.501}] \\ \left| \frac{\Delta D_x}{\sqrt{\beta_x}} \right|_{RMS} < 0.013\sqrt{m} \quad [\text{Rep. 501}]$$

- BPM Resolution: $200\mu m$
- 210 Variables:

 \vec{k}_1 : {KQ[4-10], KQX, KQF, KQD, KQT, ···}

• Correction:

$$\Delta \vec{k}_1 = -R^{-1} \left[w_{\phi} \Delta \vec{\phi}_{(x,y)}, \ w_D \Delta \vec{D}_x, \ \Delta Q_x, \ \Delta Q_y \right]^T$$

RECAP

- All errs from measurements + 5 units of Gaussian noise to b_2
- Chrom sextupole misalignments: $\sigma_{x,y} = 2 \text{ mm}$
- RMS misalignments of MCS, $\sigma_{x,y} = 0.5$ mm
- Gaussian noise $\sigma_{\phi} = 0.25^{\circ}$, $\sigma_{D_x} = 0.01$ m

- Best β -beat correction in the 5% level
- Dispersion gets worse if not included in response matrix
- Dispersion impossible to correct !! (perhaps misuse of KQ[4-10] ?)

Dispersion Correction Strategy

• Allow for flexible weights (Ex: w, 1 - w):

$$\begin{aligned} R\Delta \vec{k} &= \vec{b} \\ \Delta \vec{k} &= (R^T W R)^{-1} R^T W \vec{b} \end{aligned}$$

where W = $[\phi_x, \phi_y, D_x, Q_x, Q_y]$

• Test with RANDOM ERRS instead of measured errs (speed):

– Enlarged b_2 Errors, Sextupole Misalignments: $\sigma_{x,y} = 1$ mm

- Gaussian nosie $\sigma_{\phi} = 0.25^{\circ}$, $\sigma_{D_x} = 0.01$ m
- Effect of weights, # of Sing. Vals, Remove IR Quads, etc...

$$\chi^{2}_{\frac{\Delta\beta}{\beta}} = \sum \left(\frac{\Delta\beta_{x,y}}{\beta_{x,y}}\right)^{2}_{rms} + \left(\frac{\Delta\beta_{x,y}}{\beta_{x,y}}\right)^{2}_{peak}, \quad \chi^{2}_{\frac{\Delta Dx}{\sqrt{\beta_{x}}}} = \sum \left(\frac{\Delta D_{x}}{\sqrt{\beta_{x}}}\right)^{2}_{rms} + \left(\frac{\Delta D_{x}}{\sqrt{\beta_{x}}}\right)^{2}_{peak}$$

• R-Matrix Dispersion Observable (D_x or $D_x/\sqrt{\beta_x}$)

Effect of Weights

- β -beat correction sensitive to weights (most seeds)
- Dispersion correction is not significantly affected weights

Dispersion Observable: D_x or $D_x/\sqrt{\beta}$

Dispersion correction works

- $D_x/\sqrt{\beta_x}$ (Calibration Independent)
- All IR Quads needed
- Optimum # of Singular Values for each iteration

Input measured errors and check recipe:

- All errs from measurements + 5 units of Gaussian noise to b_2
- Chrom sextupole misalignments: $\sigma_{x,y} = 2 \text{ mm}$
- RMS misalignments of MCS, $\sigma_{x,y} = 0.5$ mm
- Gaussian nosie $\sigma_{\phi} = 0.25^{\circ}$, $\sigma_{D_x} = 0.01$ m

• SPS:

- Very linear & well behaved optics
- Introduce β -beat and apply correction
- Only 4 knobs (too few, not really scalable to LHC case)

• RHIC:

- Observable β -beat \sim 15-20%
- Arc Circuits + IR Quads (many knobs, closer to LHC)
- AC Dipole Vs. Free Oscillations (compare correction)
- Limitations faulty BPMs, reproducibility

Decoherence 300 Turns 400 600 800 1000 Turn Number

-4 -6

-8

0

200

-10

Fitting Variables:

Local Coupling @LHC

- Random Quad Tilts + Large Tilt (6km) + BPM Tilts (2mrad)
- BPM Resolution: 200 μm
- Coherent Oscillations: 400 Turns

Large Coupling Source Identified, and local correction feasible Further improvements to algorithms is forseen

Application & Commissioning

- Requirements for Effective Corr:
 - Well Functioning and Synchronized BPM System (Turn-By-Turn)
 - Coherent Oscillations (\sim 400 turns, perhaps AC Dipole)
 - Reproducibility
- Application:
 - High level JAVA application (Optics, Coupling, Correction)
 - Interface with FESA and Online MAD Model
 - Option to apply trim corrections
- Commissioing:
 - At most 5-6 Iterations (re-adjust injection)
 - Participants: Rogelio, Rama interested

 $\Delta \beta / \beta$ & $\Delta D_x / \sqrt{\beta_x}$ correction feasible