LOC meeting

Spectrometer compensation in IR2 and IR8 during the 450 GeV collision run

Y. Papaphilippou

Thanks to S. Fartoukh, W. Herr, B. Jeanneret, M. Giovannozzi

September 11, 2006

Outline

- Can the spectrometer magnets of IR2 and IR8 have their maximum (corresponding to 7TeV) field during the 450 GeV collisions run? (LTC action)
- IR2/8 nominal injection optics and crossing schemes
- IR2/8 spectrometer magnets and internal crossing angles
- Nominal aperture with different configurations
 - With/without external crossing
 - □ With + or spectrometer polarities

Available aperture when spectrometer ramped to its max value at 450 GeV.

Analytical estimates and MADX simulations

LHC experimental IRs

Two high luminosity experiments
 ATLAS in IP1 (vertical crossing)
 CMS in IP5 (horizontal crossing)

B-physics with lower luminosity in asymmetric IP8

□ **LHCb** (horizontal crossing)

□ Injection of beam 2

Heavy ion experiment (and p-p collisions with offset beams)

□ ALICE (vertical crossing)

□ Injection of beam 1

IR2 Injection optics (O. Brüning et al. LHC Project rep 367)

 $\beta^*=10m$, vertical crossing angle of ±150µrad and horizontal parallel separation of ± 2mm

- External angle of ±80µrad for reducing the long range beam-beam effect
- Internal angle of ±70µrad for compensating spectrometer orbit distortion

Horizontal separation positive for Beam 1 and negative for Beam 2

Angle sign can be chosen arbitrarily (following spectrometer polarity) LOC meeting, Y. Papaphilippou 4

ALICE dipole magnet and its compensators

- 3m-long spectrometer dipole (MBAW)
 @ 10m to the right of the IP
- Vertical deflection with nominal integrated field of 3Tm (deflection of 130µrad @ 7TeV)
- The resulting orbit deflection is compensated by three dipole magnets
 - Two 1.5m-long magnets of type MBXWT@ 20m left and right of the IP
 - One 2.6m-long magnet of type MBWMD@ 10m to the left of the IP
- Two Beam Position Monitors (BPMWS) are located upstream and downstream of the two MBXWT to monitor the internal bump closure

Injection optics around the IR2

Equipment	Aperture [m]	β [m]
BPMSW.1L2	0.030	57
MBXWT.1L2	0.026	56 - 48
MBWMD.1L2	0.030	24 - 19
IP2	0.029	10
MBAW.1R2	0.151	17 - 23
MBXWT.1R2	0.026	48 - 56
BPMSW.1R2	0.030	57

11/09/2006

Internal crossing bump of IR2

Internal crossing angle of ±70µrad in the vertical plane (maximum deflection of ±0.7mm at MBWMD)

External crossing angle follows spectrometer dipole polarity

Nominal injection crossing bump of IR2

External crossing angle of ±80µrad ext. - int **BEAM 1** in the vertical plane added giving an 6 ext, 0 int effective crossing angle of - ext. + int 4 0 ext, - int ±150µrad, when polarity of 0 ext. 0 int 2 spectrometer follows the sign of the 0 ext, + int Ь + ext, - int external angle > + ext. 0 int ∞ + ext, + intBeam size varies between 0.8 and -2 0.3mm -4 Deflection maximum of 6σ at -6 **MBWMD** x 10⁻⁴ -8 3310 3315 3320 3325 3330 3335 3340 3345 3350 33 s [m] ext. 0 in 6 ext 0 ext ⊦ext 0 in ⁵ م δy [m] 3 3335 3310 3315 3320 3325 3330 3340 3345 3350 3330 3335 3340 3345 3350 3355 s[m]s [m]

Nominal injection aperture in IR2

Equipment	n ₁ [σ]	n ₁ [m]	n ₁ [%]
BPMSW.1L2	20	0.014	47
MBXWT.1L2	17	0.011	42
MBWMD.1L2	33	0.014	47
IP2	53	0.015	52
MBAW.1R2	221	0.093	58
MBXWT.1R2	17	0.011	42
BPMSW.1R2	20	0.014	47

3315

3320

3325

3330

s [m]

3335

3340

3345

3350

3355

- Aperture varies for less than 3σ between the scheme with only internal and full crossing scheme
- Around half of the available aperture is lost for all compensators and 40% for the spectrometer (but a lot of margin in that area)

Internal crossing bump of IR2 with collision strength for the spectrometer dipole

Internal crossing angle of ±1089µrad in the vertical plane

Maximum deflection of ±0.011m at MBWMD, corresponding to 25σ, as compared to 0.0007m (1.6σ) of the nominal bump LOC meeting, Y. Papaphilippou
10

Aperture in IR2 with full spectrometer dipole strength BEAM 1 **MBAW** 0.08 n₁ [mm] 0.06 0.04 0.02 IP2 **MBXWT** MBWMD MBXWT 0 3310 3315 3325 3330 3335 3340 3345 3320 3350 335 300 s [m] 250 Biggest loss in aperture around MBWMD 200 ກ₁ [σ] n₁ takes equivalent values 150 with MBWXT and IP2 in σ 100 and even smaller in mm 50 3310 3315 3330 3335 3340 3345 3320 3325 3350 3355

s [m]

Aperture loss in IR2 by element

Equipment	n ₁ nominal [σ]	n ₁ full [σ]	n ₁ nominal [m]	n ₁ full [m]	n ₁ nominal [%]	n₁ full [%]
BPMSW.1L2	20	20	0.014	0.014	47	47
MBXWT.1L2	17	17	0.011	0.011	42	42
MBWMD.1L2	33	20	0.014	0.009	47	30
IP2	53	53	0.015	0.015	52	52
MBAW.1R2	221	217	0.093	0.088	62	58
MBXWT.1R2	17	17	0.011	0.011	42	42
BPMSW.1R2	20	20	0.014	0.014	47	47

Not important impact in any element apart MBWMD

- Available aperture of 9mm (with respect to 14mm), corresponding to 13σ of aperture loss
- □ Remaining aperture is 30% of the available

polarity)

- Internal angle of ±135 µrad for compensating spectrometer orbit distortion
- Horizontal crossing angle always negative for Beam 1 and positive for Beam 2

-0.006

Momentum offset = 0.00 %

Vertical separation sign can be chosen arbitrarily

11/09/2006

s (m) [*10**(3)]

LHCb dipole magnet

- 1.9m-long spectrometer dipole (MBLW) @ 4.9m to the right of the IP
- Horizontal deflection with nominal integrated field of 4.2Tm (deflection of 180µrad @ 7TeV)

The resulting orbit deflection is compensated by three dipole magnets

- □ Two 0.8m-long magnets of type MBXWS @ 20m left and right of the IP
- □ One 3.4m-long magnet of type MBXWH @ 5m to the left of the IP

Two Beam Position Monitors (BPMWS) are located upstream and downstream of the two MBXWS to monitor the internal bump closure LOC meeting, Y. Papaphilippou

Injection optics around the IR8

Internal crossing bump of IR8

S [m]

- Internal crossing angle of ±135µrad in the horizontal plane (maximum deflection of ±0.6mm at MBXWH)
- External crossing angle does not follow spectrometer dipole polarity
- Note additional crossing at the edge of MBXWH(???) 11/09/2006

Nominal injection crossing bump of IR8

- External crossing angle of ±65 or ±210µrad in the horizontal plane added giving an effective crossing angle of ±200 or ±75µrad, and polarity of spectrometer does not follow the sign of the external angle
- Beam size varies between 0.7 and 0.3mm

2.331

s [m]

2.332

Deflection maximum of 6o at MBXWS

8 <u>× 1</u>0⁻⁴

7

6

3

2.329

2.33

₫ 5

b

Nominal injection aperture in IR8

[m]

Equipment	n ₁ [σ]	n ₁ [m]	n ₁ [%]
BPMSW.1L8	20	0.014	45
MBXWS.1L8	16	0.010	40
MBXWH.1L8	34	0.012	45
IP8	56	0.016	52
MBLW.1R8	111	0.037	58
MBXWS.1R8	16	0.010	40
BPMSW.1R8	20	0.014	45

- Differences with respect to IP2 on the 2nd compensator (smaller β) and spectrometer (smaller β and aperture)
- Aperture varies for less than 3σ between the scheme with only internal and full crossing scheme
- Around 50-60% of the available aperture is lost for all compensators and 40% for the spectrometer

Aperture loss in IR8 by element

Equipment	n ₁ nominal [σ]	n ₁ full [σ]	n ₁ nominal [m]	n₁ full [m]	n₁ nominal [%]	n₁ full [%]
BPMSW.1L8	20	20	0.014	0.014	45	45
MBXWS.1L8	16	16	0.010	0.010	40	40
MBXWH.1L8	34	19	0.012	0.006	45	24
IP8	56	56	0.016	0.015	52	52
MBLW.1R8	111	95	0.037	0.031	58	50
MBXWS.1R8	16	16	0.010	0.010	40	40
BPMSW.1R8	20	20	0.014	0.014	45	45

Not important impact in any element apart MBXWH

- Available aperture of 6mm (with respect to 12mm), corresponding to 15σ of aperture loss
- □ Remaining aperture corresponds 24% of the available

Summary

Main limitations in IR2 and 8 in the aperture of 2nd compensator magnets

- □ MBWMD in IR2
 - Available aperture of 9mm (with respect to 14mm), corresponding to 13σ of aperture loss
- MBXWH in IR8
 - Available aperture of 6mm (with respect to 12mm), corresponding to 15σ of aperture loss
- In both cases, n1 above 7σ, but available aperture quite small, especially in IR8
- Any decision should be based on the ability to control the orbit and optics within the tolerances given for computing the available aperture