Results from beam-beam tracking

campaign 2005

Werner Herr, D. Kaltchev, E. McIntosh AB/ABP, TRIUMF

Questions:

- Dynamic aperture in collision with head-on and long range beam-beam interactions
- Difference between alternating of non-alternating crossing planes in IP1 and IP5
- Difference betwee Nominal and PACMAN bunches
- Effect of triplet errors

Procedure (1):

- **V6.4** and $\beta^* = 0.55$ m
- Head-on and long range beam-beam interactions
- Triplet errors corrected
- Horizontal-Vertical and Horizontal-Horizontal crossings in IP1 and IP5
- Nominal and PACMAN bunches separate

Procedure (2):

- All angles between 0^0 and 90^0 in x-y plane
- Error table 2210
- Preparation with MADX
- Tracking with SIXTRACK
- Tracking up to 10⁶ turns with 20 seeds for triplet errors
- Use of LHC@home

Working diagram

Tune scan with split 0.01 and 0.02, step of 0.001

Average Dyn. Aperture (DA), 10^6 turns 20 seeds triplet errors and corr. nominal bunch hor.-vert. crossing IP1 and 5 shown angles 0 - 45 deg

Ave. dynamic aperture (HV triplet errors, NOMINAL)

Ave. dynamic aperture (HV triplet errors, PACMAN)

Ave. dynamic aperture (HH triplet errors, NOMINAL)

Ave. dynamic aperture (HH triplet errors, PACMAN)

Ave. dynamic aperture (HV triplet errors, split 0.02)

Min. dynamic aperture (HV triplet errors, NOMINAL)

Min. dynamic aperture (HV triplet errors, PACMAN)

Min. dynamic aperture (HH triplet errors, NOMINAL)

Min. dynamic aperture (HH triplet errors, PACMAN)

Min. dynamic aperture (HV triplet errors, split 0.02)

Chaotic border (HV triplet errors, NOMINAL)

Chaotic border (HV triplet errors, PACMAN)

Chaotic border (HH triplet errors, NOMINAL)

Chaotic border (HH triplet errors, PACMAN)

HV versus HH, average, small angles

HV versus HH, average, large angles

HV versus HH, minimum, small angles

HV versus HH, minimum, large angles

HV versus HH, chaos border, small angles)

HV versus HH, chaos border, large angles)

Observations:

- For corrected triplet errors, tune dependence dominated by beam-beam effects
- Strong angular dependence in HH case, better in vertical plane
- Dynamic aperture: small difference between HV and HH considering the full angular range, HH about 0.5 to $0.7~\sigma$ lower minimum
- Chaos border: for HH significantly lower below 45 degrees
- Tune split of 0.02 made things worse
- No alternative working point for HH case

Summary (1):

- → Dynamic aperture interval for full angular range
- ightharpoonup Values in tune range $\mathbf{Q}_x \in [0.308, 0.312]$

case	average	minimum
	dynamic aperture	dynamic aperture
HV, nominal	6.9 - 9.5	6.0 - 9.0
HV, PACMAN	7.4 - 11.0	6.4 - 10.5
HH, nominal	5.6 - 12.0	5.2 - 12.0
HH, PACMAN	7.4 - 12.0	5.0 - 12.0

Summary (2):

- → Dynamic aperture interval for full angular range
- ightharpoonup Values for best sliding window $\Delta Q_x \leq 0.002$
- ightharpoonup Within tune range $\mathbf{Q}_x \in [0.300, 0.320]$

case	average	minimum
	dynamic aperture	dynamic aperture
HV, nominal	8.0 - 12.0	7.2 - 12.0
HV, PACMAN	8.6 - 12.0	7.8 - 12.0
HH, nominal	7.2 - 12.0	6.8 - 12.0
HH, PACMAN	8.0 - 12.0	7.4 - 12.0

Other working points

Proposed studies:

- Triplet errors uncorrected
- Triplet errors partially corrected
- Other working point
- V6.5 and $\beta^* = 2$ m, no correction of triplet errors
- Vertical-vertical crossing