Results from beam-beam tracking

campaign 2005

Werner Herr, D. Kaltchev, E. McIntosh AB/ABP, TRIUMF

Questions:

- Dynamic aperture in collision with head-on and long range beam-beam interactions
- Difference between alternating of non-alternating crossing planes in IP1 and IP5
- Difference betwen Nominal and PACMAN bunches
\square Effect of triplet errors

```
Procedure (1):
```

\square V6.4 and $\beta^{*}=0.55 \mathrm{~m}$
Head-on and long range beam-beam interactions

Triplet errors corrected

- Horizontal-Vertical and Horizontal-Horizontal crossings in IP1 and IP5

Nominal and PACMAN bunches separate

Procedure (2):

- All angles between 0^{0} and 90^{0} in $x-y$ plane
- Error table 2210
- Preparation with MADX
- Tracking with SIXTRACK

Tracking up to 10^{6} turns with 20 seeds for triplet errors

- Use of LHC@home

Working diagram

Tune scan with split 0.01 and 0.02 , step of 0.001

tunescan lines

 (step 0.001)split 0.02
split 0.01

Average Dyn. Aperture (DA), $10^{\wedge} 6$ turns
20 seeds triplet errors and corr. nominal bunch hor.-vert. crossing IP1 and 5 shown angles $0-45 \mathrm{deg}$
split 0.01 HV Nom

Ave. dynamic aperture (HV triplet errors, NOMINAL)

Ave. dynamic aperture (HV triplet errors, PACMAN)

Ave. dynamic aperture (HH triplet errors, NOMINAL)

Ave. dynamic aperture (HH triplet errors, PACMAN)

Ave. dynamic aperture (HV triplet errors, split 0.02)

Min. dynamic aperture (HV triplet errors, NOMINAL)

Min. dynamic aperture (HV triplet errors, PACMAN)

Min. dynamic aperture (HH triplet errors, NOMINAL)

Min. dynamic aperture (HH triplet errors, PACMAN)

Min. dynamic aperture (HV triplet errors, split 0.02)

Chaotic border (HV triplet errors, NOMINAL)

Chaotic border (HV triplet errors, PACMAN)

Chaotic border (HH triplet errors, NOMINAL)

Chaotic border (HH triplet errors, PACMAN)

HV versus HH, average, small angles

HV versus HH, average, large angles

HV versus HH, minimum, small angles

HV versus HH, minimum, large angles

HV versus HH, chaos border, small angles)

HV versus $H H$, chaos border, large angles)

Observations:

- For corrected triplet errors, tune dependence dominated by beam-beam effects

Strong angular dependence in HH case, better in vertical plane
\square Dynamic aperture: small difference between HV and HH considering the full angular range, HH about 0.5 to 0.7σ lower minimum

Chaos border: for HH significantly lower below 45 degrees

Tune split of 0.02 made things worse
No alternative working point for HH case

Summary (1):

\rightarrow Dynamic aperture interval for full angular range
\rightarrow Values in tune range $\mathrm{Q}_{x} \in[0.308,0.312]$

case	average dynamic aperture	minimum dynamic aperture
HV, nominal	$6.9-9.5$	$6.0-9.0$
HV, PACMAN	$7.4-11.0$	$6.4-10.5$
HH, nominal	$5.6-12.0$	$5.2-12.0$
HH, PACMAN	$7.4-12.0$	$5.0-12.0$

Summary (2):

\rightarrow Dynamic aperture interval for full angular range
\rightarrow Values for best sliding window $\Delta \mathrm{Q}_{x} \leq 0.002$
\rightarrow Within tune range $\mathrm{Q}_{x} \in[0.300,0.320]$

case	average dynamic aperture	minimum dynamic aperture
HV, nominal	$8.0-12.0$	$7.2-12.0$
HV, PACMAN	$8.6-12.0$	$7.8-12.0$
HH, nominal	$7.2-12.0$	$6.8-12.0$
HH, PACMAN	$8.0-12.0$	$7.4-12.0$

Other working points

Proposed studies:

- Triplet errors uncorrected

T Triplet errors partially corrected

- Other working point
\square V6.5 and $\beta^{*}=2 \mathrm{~m}$, no correction of triplet errors
- Vertical-vertical crossing

