Displacement of IP2 at injection

- See my presentation in LOC meeting 11/4/2006.
- IP1 and IP5 have been displaced transversely in *collision* optics to gain aperture (S. Fartoukh)
- There is a similar aperture limitation in IR2 at *injection*
 - Showed that +1 mm vertical displacement of orbit at IP2 provides better aperture
 - Reverse sign for opposite ALICE spectrometer polarity
 - However some reduction in beam-beam separation
- Conditions for this revised study
 - V6.500 injection optics
 - ALICE spectrometer on
 - Latest "collimation" aperture model used
 - Larger vertical orbit displacement at IP2: 1.5 mm
 - Improve beam-beam separation with increased crossing angle

Vertical Beam envelopes, V6.500 injection optics, IR2

Maximum corrector strengths ?

Corrector strengths, V6.500 injection optics, IP2 +1.5mm

Strengths before matching:

ACBCV6.L2B1 =	-7.771488E-06 ;
ACBCV6.R2B2 =	-7.57375E-06 ;
ACBCVS5.R2B1 =	5.7337946E-05 ;
ACBYVS4.L2B1 =	-6.9601072E-05 ;
ACBYVS4.L2B2 =	-1.3481602E-05 ;
ACBYVS4.R2B1 =	-3.2639812E-05 ;
ACBYVS4.R2B2 =	-6.6937891E-05 ;
ACBYVS5.L2B2 =	4.5792594E-05 ;

Strengths after matching:

ACBCV6.L2B1 =	-3.484124777E-05 ;	
ACBCV6.R2B2 =	-3.39547325E-05 ;	
ACBCVS5.R2B1 =	-2.375369296E-05	;
ACBYVS4.L2B1 =	-7.903633837E-05	;
ACBYVS4.L2B2 =	0.0001415135948	;
ACBYVS4.R2B1 =	0.0001494503189	;
ACBYVS4.R2B2 =	-6.709669971E-05	;
ACBYVS5.L2B2 =	-1.897076573E-05	;

Within acceptable corrector strength range

Vertical Beam envelopes, V6.500 injection optics, IP2 +1.5mm

Corrector strengths, V6.500 injection optics, IP2 +1.5mm

Strengths before matching:

ACBCV6.L2B1 =	-7.771488E-06 ;
ACBCV6.R2B2 =	-7.57375E-06 ;
ACBCVS5.R2B1 =	5.7337946E-05 ;
ACBYVS4.L2B1 =	-6.9601072E-05 ;
ACBYVS4.L2B2 =	-1.3481602E-05 ;
ACBYVS4.R2B1 =	-3.2639812E-05 ;
ACBYVS4.R2B2 =	-6.6937891E-05 ;
ACBYVS5.L2B2 =	4.5792594E-05 ;

Strengths after matching:

ACBCV6.L2B1 =	-3.552696732E-05 ;
ACBCV6.R2B2 =	-3.462300455E-05 ;
ACBCVS5.R2B1 =	-1.869446244E-05 ;
ACBYVS4.L2B1 =	-8.51776094E-05 ;
ACBYVS4.L2B2 =	0.0001403240416 ;
ACBYVS4.R2B1 =	0.0001465703354 ;
ACBYVS4.R2B2 =	-7.300298417E-05 ;
ACBYVS5.L2B2 =	-1.493024269E-05 ;

Half-crossing angle increased 15 µrad

Beam-beam separation

- Separation in units of sigma (different for each beam) in each plane
 - Total separation in units of largest of 4 sigmas

Absolute vertical separation between beams

Total separation in units of largest of 4 sigmas

Original and final separations

x/m

Conclusions

- Aperture of IR2 at injection can be optimised by +1.5 mm vertical displacement of orbit at IP2
 - Opposite sign for other ALICE polarity
 - Some increased corrector strengths
 - Some reduction of beam-beam separation
- Beam-beam separation can be recovered, if necessary, by increasing half-crossing angle by 15 μrad
 - Most of aperture improvement preserved
- Vertical displacement of IP2 (like the crossing angle) should be considered as a "knob", to some extent at least.

Backup slides from 11 Apr 2006

Comparison of horizontal aperture models in IR2

(lxplus1) ln[400]:=

Comparison of vertical aperture models in IR2

(Ixplus1) In[401]:=

DisplayTogether[apYcollPlot, apYseqPlot, FrameLabel \rightarrow {"s/m", "A_y/m"}, Frame \rightarrow True]

