LOC meeting

Sorting for the Short Straight Section quadrupoles of Sectors 5-6

Y. Papaphilippou

Thanks to S. Fartoukh, M. Giovannozzi and A. Lombardi (AB-ABP) P. Hagen, M. Modena, E. Todesco and T. Tortschanoff (AT-MAS) February 28th, 2006

Sorting purpose and strategy

- Minimize the effect of quadrupole error (b₂) with respect to beta-beating
- Quality factor integrated 2nd order resonance driving term Four coefficients, one for each plane and aperture:

$$QF_{x,y} = \frac{\left|\sum_{j} \beta_{x,y_j} \bar{k_j} b_{2j} e^{2i\mu_{x,y}}\right|}{\beta_{x,y_{max}} \bar{k}}$$

Compare with random distribution of N=45 quads

$$(QF)_{rms} = \frac{\sqrt{N}}{2} b_{2rms} \approx 3.4 b_{2rms}$$

Local compensation and HP magnets

- Best match of b₂ between pairs of quads with phase advance of $\sim \pi/2$ i.e., F (D) with consecutive F (D)
- Treat high-permeability (HP) magnets (μ >1.008) giving large b₂ individually
- Control evolution of 4+4 coefficients along the sector, giving more weight in the "realistic" scenario (when HP effect disappears, at cold)
- Monitor induced tune-shift, local beta and dispersion beating within the sector for each beam and b₂ scenario

$$\delta Q_{x,y} = \pm \frac{1}{4\pi} \sum_{j=1}^{45} \beta_{x,y_j} \bar{k_j} b_{2j}$$

$$\frac{\delta \beta_{x,y}}{\beta_{x,y}}(s) = \pm \frac{\sum_{j=1}^{45} \beta_{x,y_j} \bar{k_j} b_{2j} \cos \left[2(\pi Q_{x,y} - |\mu_{x,y}(s) - \mu_{x,y}(s_j)|) \right]}{2 \sin(2\pi Q_{x,y})}$$

$$\frac{\delta D_x}{\sqrt{\beta_x}}(s) = -\frac{\sum_{j=1}^{45} \sqrt{\beta_x_j} D_{x_j} \bar{k_j} b_{2j} \cos(\pi Q_x - |\mu_x(s) - \mu_x(s_j)|)}{2 \sin(\pi Q_x)}$$

$$\frac{\delta D_x}{\sqrt{\beta_x}}(s) = -\frac{\sum_{j=1}^{45} \sqrt{\beta_x_j} D_{x_j} \bar{k_j} b_{2j} \cos(\pi Q_x - |\mu_x(s) - \mu_x(s_j)|)}{2 \sin(\pi Q_x)}$$

28/02/2005

Semi-automatic algorithm

- Pair neighboring (de)focusing magnets within a type having similar b₂ (raw and "realistic") and permeability
- Match pairs across neighboring SSS types and use individual MQ's for missing SSS to best match the pairs
- Reiterate (doing permutations) until converging to minimum
- Try to balance the 4 + 4 coefficients to a minimum (least square sense) with weight to the realistic case (when HP effect disappears)
- Check with magnet experts for magnet availability (if yes if not if not in a content of the second secon

Sector 5-6 features

- 45 SSS quads, following the pattern 1+2*2+3+3*4+6+9+10=45 (as in all sectors)
 - 20 with trim quads (MT), 21 with octupoles (MO), 4 with skew quads (MS)
- All 10 types of SSS appear also in sectors 7-8 and 1-2
- 12 SSS with high permeability (2 marginal cases in only one and opposite aperture)
- Slots already allocated (**10 paired**) but not frozen (move them around within a type).
- 10 SSS of 3 different types are not yet assembled, giving flexibility to choose from a large pool of individual MQs (around 30) not yet assigned in a cold mass (ACCEL fabrication table by T. Tortschanoff) 28/02/2005 LOC meeting, Y. Papaphilippou

Cold Mass	Total
Equipment	in arc of
Code	Sector 5-6
LQMSD	4
LQMTE	10
LQMTH	6
LQMTJ	4
LQMOE	9
LQMOK	4
LQMON	2
LQMOP	2
LQMOU	3
LQMOV	1

Sector 5-6, b₂ distribution

The rms values of the "raw" b₂ for both apertures is 29
 The rms values of the "realistic" b₂ (if the HP effect disappears at cold) for both apertures is 13
 LOC meeting, Y. Papaphilippou
 LOC meeting, Y. Papaphilippou

Name	SSS #	b2 [u	nits]	ected	b2 [u	b2 [u μr		
		v1	v2	v1	v2	v1	v2	
QATH.12R5	SSS250	46	43	8	14	1.018	1.015	
QATM.13R5	SSS259	-20	-17	-15	-12	1.003	1.003	
QATH.14R5	SSS251	45	45	-2	7	1.021	1.018	
QATQ.15R5	MQ351	-32	-20	-25	-13	1.002	1.002	
QATH.16R5	SSS252	29	28	2	-4	1.014	1.016	
QATM.17R5	SSS342	-5	4	-12	7	1.007	1.004	
QATH.18R5	SSS318	27	29	-12	-4	1.018	1.016	
QATQ.19R5	MQ353	-15	-12	-8	-5	1.002	1.002	
QATH.20R5	SSS319	22	23	-16	-16	1.018	1.018	
QATM.21R5	SSS348	-19	13	-22	6	1.006	1.007	
QOAG.22R5	SSS324	58	54	23	19	1.017	1.017	
QASE.23R5	MQ342	-21	-13	-14	-6	1.002	1.002	
QOAG.24R5	SSS323	58	51	25	21	1.016	1.015	
QOAR.25R5	SSS343	-10	-6	-10	-7	1.005	1.005	
QOAG.26R5	SSS325	66	55	10	-19	1.024	1.030	
QASE.27R5	MQ344	-12	-6	-5	1	1.002	1.002	
QOAG.28R5	SSS327	71	71	9	12	1.026	1.025	
QOBF.29R5	SSS253	-3	-26	-10	-23	1.007	1.004	
QOAM.30R5	SSS237	69	77	28	38	1.019	1.018	
QOAV.31R5	MQ339	-15	-18	-8	-11	1.002	1.002	
QOAG.32R5	SSS322	20	15	2	5	1.011	1.008	
QOBJ.33R5	SSS351	-16	-24	-16	-19	1.005	1.003	
QOAM.34R5	SSS239	-14	-1	-6	4	1.002	1.003	
QOBF.33L6	SSS345	-18	-7	-19	-5	1.005	1.004	
QOAM.32L6	SSS326	-33	-27	-25	-22	1.002	1.003	
QOAV.31L6	MQ348	-9	-8	-3	-1	1.002	1.002	
QOAG.30L6	SSS033	-20	-16	-16	-17	1.004	1.005	
QOBF.29L6	SSS022	3	1	10	11	1.003	1.001	
QOAM.28L6	SSS027	-8	-12	-1	-9	1.002	1.004	
QASE.27L6	MQ346	-15	-13	-8	-6	1.002	1.002	
QOAG.26L6	SSS240	-9	-27	-4	-19	1.003	1.002	
QOAR.25L6	SSS254	-24	-20	-16	-14	1.002	1.003	
QOAG.24L6	SSS241	-11	-5	-15	-9	1.006	1.006	
QASE.23L6	MQ343	-19	-18	-12	-11	1.002	1.002	
QOAG.22L6	SSS236	-20	-14	-17	-8	1.004	1.003	
QATM.21L6	SSS260	-27	-12	-25	-16	1.004	1.006	
QATH.20L6	SSS248	12	5	17	10	1.003	1.003	
QATQ.19L6	MQ210	-7	-10	-3	-3	1.003	1.002	
QATH 18L6	SSS246	17	23	7	11	1.008	1.009	
QATM 17L6	SSS257	-16	-17	-17	-15	1.005	1.004	
QATH 161 6	SSS321	-5	-8	4	0	1.002	1.002	
QATO 151.6	MQ345	-17	-9	-10	-2	1 002	1 002	
OATH 141 6	SSS247	-5	4	-11	3	1 007	1.002	
OATM 131.6	SSS258	-16	-17	-10	-12	1 003	1 003	
OATH 121 6	SSS335	_20	-27	_21	_10	1 002	1.002	
			<u> </u>			1.002	1.002	

Sequence and driving term evolution

 \Box Coefficients for raw b₂: **36, 32** (aperture/beam)

1) and **42**, **14** (aperture/beam 2) as compared to rms QF of **102** and **100**

Coefficients for "realistic" b₂: 12, 9 and 12, 2 as compared to rms QF of 46 and 47

LOC meeting, Y. Papaphilippou

Beta-beating along the sector Sector 5-6, Raw b2

Peak β-beating for realistic b₂ of 1.7% (0.3% at sector exit) 28/02/2005
LOC meeting, Y. Papaphilippou

Beta-beating summary for sector 5-6

- β-beating at the exit of sector ~ 3 times smaller than expected rms value
- Smaller or equal to the specified rms value (for rms b₂ of 10 units)

Realistic b₂

- β-beating at the exit of sector ~ 2 times smaller than expected rms value
- Smaller than the specified rms value
- For both cases, β-beating at the exit of the sector of less than 1% (0.3% for the realistic case)
- Comparing to the worse case scenario of a random distribution (3σ), reduction of the peak beta beating due to sorting is dramatic (factor of 4 smaller)

Dispersion beating summary for sector 5-6

- Dispersion beating smaller or equivalent to the expected rms value but larger than the specified rms
- Comparing to a worse case scenario of a random distribution (3σ) the dispersion beating due to sorting is comfortable (although not targeted during the procedure)

28/02/2005

Induced tune-shift for sector 5-6

Induced tune-shift for raw b₂ is equivalent to the expected value (3σ), but largely higher than the specified (effect of large number of HP magnets)

Situation is much better for realistic b2 (factor of 3 less and within specs)28/02/2005LOC meeting, Y. Papaphilippou12

Conclusion for 4 Sectors

Extremely efficient sorting due to production anticipation (MQs)

- β-beating at exit of the sector less than 1.1% for raw b₂ or 0.3% for the realistic case.
- Its peak value is less than 3.6% for raw or 1.8% for realistic b₂
- Other sector linear optics properties (dispersion, tune-shift) well behaved and within specs (although not controlled)

To be continued

- Comparison with worst case random distributions within the same SSS types
- Global comparison for all sectors (including dipoles S. Fartoukh)
- Check influence of measurement uncertainty (5-10 units)
- Built the machine models for quads
- Compare analytical estimates with simulations (MAD) 28/02/2005 LOC meeting, Y. Papaphilippou