B6 budget in the LHC quadrupoles

S. Fartoukh for the magnet team

- **B6 hysteresis** effects at injection in MQM and MQY magnets \rightarrow a general overview
- Comparison with MQ's
 - 1. Detuning
 - 2. Driving terms
- Conclusions and future plans.

B6 hysteresis effects at injection (1/2)

Very low injection setting (< Nom. / 16) for MS and DS quadrupoles MQM& MQY

→ Inducing a very negative b6 (and large b10) depending on

1. The **injection current** I_{inj} and the **critical current** I_c the magnet,

2. The minimum current I_o reached after the de-ramping

B6 hysteresis effects at injection (2/2)

→ $I_o = 0$ A warrants the monotony of the TF at the start of ramp and in particular during snap-back but is a worst case for b6.

b6 estimate in **MQMs and MQYs** for LHC injection optics V6.5 based on measurement and FiDEL magnetisation model for $I_0 = 0A$

→ b6 as low as -20→-25 units
in some MQM's :

 \rightarrow b6 up to -4 units in MQY's:

Comparison with MQ's: detuning (1/3)

• MQ target for was set to -2 < b6 < 0 imposed by the control of b6like detuning terms (i.e. $\Delta Q \propto J^2$)

Comparison with MQ's: detuning (2/3)

 $\begin{array}{l} MQM \ contribution \ (beam1) \\ b6(I_{inj}) \ based \ on \ measurements \\ and \ FiDEL \ model \end{array}$

S. Fartoukh ABP-LOC 28/03/2006

→Main contribution: MQM and MQY

Comparison with MQ's: detuning (3/3)

→ Similar to $\langle b6 \rangle = -2$ units in MQs: $\Delta Q_x (12\sigma) \sim \Delta Q_y (12\sigma) \sim -5.10^{-3}$ → Just at the limit

Comparison with MQ's: driving terms (1/4)

Even if not zero, the systematic b6 in MQ's do not really contribute to the sixth order driving terms due to self-compensation from cell to cell (π/2 phase advance in the LHC arc cell):

• Then, the contribution from the **random b6** is typically 400 r.m.s.: $c_{(0,6)}^{(r.m.s)} \alpha \sqrt{N_{QD}} (KL) \beta_{max}^3 \sigma_{b6} \sim 400$ for $\sigma_{b6} = 1.75$ units r.m.s. (E.T.) Example with $\langle b6 \rangle = -2$ units in MQs

→ While much less stronger than the MQs, DS and MS magnets will dominate in particular MQYs in IR4 and IR6 (high beta's).

Comparison with MQ's: driving terms (2/4)

→ Still comparable to the contribution of the MQ random b6

Comparison with MQ's: driving terms (3/4)

MQY contribution

 \rightarrow MQY (IR4/IR6) dominant with dissymmetry **beam1/2** (≠ phase advance in ring1 and ring 2 between the few critical MQYs)

Comparison with MQ's: driving terms (4/4)

Conclusions and future plans

- At injection, the main contribution to b6 comes from the MQM/MQY magnets (huge hysteresis effect for magnets with low injection settings).
 - 1. Inducing an **amplitude detuning of the order of 0.005 at 12\sigma** just at the limit.
 - 2. Exciting the sixth order driving terms, in particular the most dangerous one $c_{(6,0)}$ (one order of magnitude larger compared to MQ contribution)
 - 3. Possibly **dissymmetrising** the non-linear dynamics in beam1 and beam2.
- **DA tracking studies** still needed to fully assess the impact of the b6 (and b10) hysteresis effects in MQMs and MQYs.

\rightarrow Should the impact be large, possible cures are

1. A correction of the driving terms by **the use of MCTX triplet corrector magnets.**

2. Dedicated cycles for each MQM/MQY magnets in view of magnet to magnet self-compensation but with some draw-backs at the beginning of the ramp and an increase of complexity.