

Impact of experimental solenoids on LHC optics

→ See J.P. Koutchouk, "Correction of the systematic and random betatron coupling in LHC with an application to LHC version 2", (SL-Note-94-101-AP; LHC-Note-306), 1 Jan 1994.

└→ Conclusion: Solenoid effects negligible, no local compensation scheme (skew quadrupoles) foreseen.

→ See A. Koschik, "On the implementation of experimental solenoids in MADX and their effect on coupling in the LHC", Proc. of EPAC 2006.

← Conclusion: Solenoid effects small, global coupling compensation scheme will do the job.

Effect of the experimental solenoids is small, why look at it?

- ➔ Numbers have changed since 1994.
- ➔ Once big effects (a2, dipole errors) corrected, "smaller" effects might become visible.
- Experimental solenoids might be ramped up/down, good idea to have a knob to follow the changes?

What effects of the solenoids on the optics do we expect?

- → Coupling in transverse planes (tunes Q_x/Q_v couple)
- ➔ Orbit changes when using separation bumps and crossing scheme
- ➔ Roll of the crossing plane (rotation of the beam)

Impact of experimental solenoids on LHC optics Numbers for ATLAS (IP1) and CMS (IP5)

Impact of experimental solenoids on LHC optics Adding solenoids to the sequence

```
// Define single solenoid ATLAS and CMS
on sol 1 := 0; // to switch solenoid on and off for nominal energy (7TeV)
on sol 5 := 0; // to switch solenoid on and off for nominal energy (7TeV)
              77 for injection energy set this switch to 7/.45
I. xsol. ip1
               = 5.3;
               = 2.;
a. xsol . i p1
I. xsol. i p5
               = 12.5;
a. xsol . i p5
               = 4.;
msol.ip1: solenoid, l := l.xsol.ip1/2, ks: = a.xsol.ip1*clight/(7e12) * on_sol 1;
msol.ip5: solenoid, l := l.xsol.ip5/2, ks: = a.xsol.ip1*clight/(7e12) * on_sol5;
XSOL. L1 : msol.ip1;
XSOL. R1 : msol.ip1;
XSOL. L5 : msol. ip5;
XSOL. R5 : msol.ip5;
sequence= I hcb1;
  install, element= XSOL.L1, at= -1.xsol.ip1/4, from= IP1;
  install, element= XSOL. R1, at= +1. xsol.ip1/4, from= IP1;
  install, element= XSOL.L5, at= -1.xsol.ip5/4, from= IP5;
  install, element= XSOL.R5, at= +1.xsol.ip5/4, from= IP5;
  flatten;
endedit;
                                                             Because of marker at IP, we
                                                             split solenoid in left/right part.
sequence= I hcb2;
  install, element= XSOL.L1, at= -1.xsol.ip1/4, from= IP1;
  install, element= XSOL. R1, at= +1. xsol.ip1/4, from= IP1;
  install, element= XSOL.L5, at= -1.xsol.ip5/4, from= IP5;
  install, element= XSOL.R5, at= +1.xsol.ip5/4, from= IP5;
  flatten;
endedit;
```


Impact of experimental solenoids on LHC optics *LHC optics sequence file (V6.501)*

→ V6.501.inj.str

abas abcs

To be defined by the user!

→ V6.501.seq

REAL CONST I.MBAS = 5.3; REAL CONST I.MBCS = 12.5;

//----- SOLENOID -----mbas: solenoid, l:= l.mbas/2, ks:= abas;
mbcs: solenoid, l:= l.mbcs/2, ks:= abcs;

//-----LHC SEQUENCE ------LHCB1 : SEQUENCE, refer = CENTRE, L = LHCLENGTH; IP1:OMK, AT= pIP1+IP1OFS.B1*DS; mbas.r1:mbas, at= 1.325+(0-IP1OFS.B1)*DS, from The current proposal is to put the solenoids directly into the sequence, as done by Thys for optics version V6.501.

Default: SWITCHED OFF!

from= IP1;

Impact of experimental solenoids on LHC optics Coupling effects, closest tune, global decoupling

- → Induced peak β-beating is $(\Delta\beta/\beta)_{peak}$ = 0.1%. Dispersion beating below 1%. Orbit can change up to 100 µm (to be checked further???).
- → Coupling effects from CMS solenoid and global decoupling with SF's algorithm (all skew quadrupoles around the machine are used)
- Local compensation is not possible (only 1 skew quadrupole on each side of the solenoid. Next skews are in the arcs.)

Closest Tune Scan with CMS solenoid ON and after decoupling using global scheme by SF

Impact of experimental solenoids on LHC optics Quasi-local decoupling (analytical approach)

- Coupling introduced by solenoids can be compensated using skew quadrupoles.
- In general 4 skew quadrupoles on each side of the solenoid are needed for the compensation to work.

Complex coupling coefficient

$$c_{skew}^{\pm} = \frac{1}{2\pi} \sqrt{\beta_x \beta_y} \cdot k_s \cdot e^{i[\mu_x \pm \mu_y]}$$

➔ 4 linear equations have to be satisfied in order to decouple the machine:

$$\sum_{m} c_{skew}^{+} = \sum_{m} \frac{1}{2\pi} \sqrt{\beta_{x}^{m} \beta_{y}^{m}} \cdot k_{s}^{m} \cdot e^{i\left[\mu_{x}^{m} + \mu_{y}^{m}\right]} = c_{sol}^{+}$$
$$m = 1, \dots, 4$$
$$\sum_{m} c_{skew}^{-} = \sum_{m} \frac{1}{2\pi} \sqrt{\beta_{x}^{m} \beta_{y}^{m}} \cdot k_{s}^{m} \cdot e^{i\left[\mu_{x}^{m} - \mu_{y}^{m}\right]} = c_{sol}^{-}$$

Impact of experimental solenoids on LHC optics *Results for 450 GeV*

- Standard optics
 - β -beating smaller 0.1%
 - Dispersion beating smaller than 1%

- → Results for 450 GeV collision optics under discussion
 - Pre-squeezed injection optics ($\beta^* = 11m$)
 - Squeezed (round beam) optics ($\beta^* = 6m$)
 - Squeezed (flat beam) optics ($\beta^* = 6/3.7m$)

Impact of experimental solenoids on LHC optics Pre-squeezed injection optics ($\beta^* = 11m$)

- \rightarrow β -beating smaller than 0.1%
- ➔ Dispersion beating smaller 0.25%
- Orbit excursion changes smaller than 60μm, occurring in quadrupoles; this is less than 4% expressed in σ_{beam} (beam separation turned ON in all IPs)

- \rightarrow β -beating negligible
- Dispersion beating negligible
- ➔ No orbit changes visible (separation bumps turned OFF)

- \rightarrow β -beating negligible
- Dispersion beating negligible
- ➔ No orbit changes visible (separation bumps turned OFF)

- → Effect of solenoids small
- → Transverse betatron coupling small
- $\rightarrow \beta$ -beating negligible
- → Dispersion beating negligible
- → Orbit changes negligible
- → Coupling compensation can be done globally if needed