

Beam behaviour at VELO during powering failures of warm dipoles and quadrupoles

Andrés Gómez Alonso AB/CO-MI

Many thanks to B. Jeanneret, Y. Papaphilippou and T. Risselada

- Introduction
- Simulations
- Beam profiles and losses at VELO
- Conclusions

- The calibration of VELO at 450 GeV raises two relevant issues
 - *Can the LHCb spectrometer be operated at maximum field?*
 - Can the VELO be closed to its minimum aperture (5 mm, 18σ)
- Both actions are possible in nominal 450 GeV collision optics, but raise protection issues in case of magnet failures (Y. Papaphilippou)
- Study of some failure scenarios at the location of VELO (around IP8)

Simulations

- Done with the 450 GeV collision and injection optics
- Powering failures leading to the fastest effects in the beam (warm magnets in IR3 and IR7 affected)
- Failures with slower effects, including the LHCb main dipole and its compensator, are supposed to be handled redundantly by the Protection Systems

	Injection	450 GeV collision
on_sep1	1	0
on_sep2	1	0
on_sep5	1	0
on_sep8	1	0
on_x1	0	0
on_x2	1	1
on_x5	0	0
on_x8	1	1
on_alice	1	1
on_lhcb	7000/450	7000/450
β_{1}^{*}	17 m	11 m
$\beta^{*}{}_{2}$	10 m	10 m
$\beta^{*}{}_{5}$	17 m	11 m
$\beta^{*}{}_{8}$	10 m	10 m

1/24/2007

andres.gomez.alonso@cern.ch

5

Beam profile at VELO Worst powering failure at RQ5.LR3 at collision 450 GeV

andres.gomez.alonso@cern.ch

Profile at VELO (I)

Beam profile at VELO Worst powering failure at RD1.LR1 at collision 450 GeV $\beta^* = 10 \text{ m}$ on_x8 = 1 on_sep8 = 0 on_lhcb = 7000/450

Profile at VELO (II)

Beam profile at VELO Worst powering failure at RQ5.LR3 at collision 450 GeV $\beta^* = 10 \text{ m}$ on_x8 = 1 on_sep8 = 0 on_lhcb = 7000/450

Profile at VELO (III)

Beam profile at VELO Worst powering failure at RBXWSH.R8 at injection, beam 1 $\beta^* = 10 \text{ m}$ on_x8 = 1 on_sep8 = 1 on_lhcb = 7000/450

Profile at VELO (IV)

Beam profile at VELO Worst powering failure at RQ5.LR7 at injection, beam 2 $\beta^* = 10 \text{ m}$ on_x8 = 1 on_sep8 = 1 on_lhcb = 7000/450

Beam profiles at different turns Worst powering failure at RQ5.LR7 at injection, beam 2

Losses (hypothetical!)

- After a fast failure the beam hits only the collimators in most cases.
 - VELO would become an aperture limitation only if closed with injection optics (hypothetical case)
 - Still in this case, as expected, most of the primary losses would happen in the collimators
- These simulations account only for the primary losses (collimators as black absorbers)
- Interest of code modification to record ALL the losses in case of a changing magnetic field (add K2 routines for tracking in MAD-X or implement changing parameters in sistrack)