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Effect of phase advance between beam-beam interactions

Possible good effect: suppression of some resonances

Possible bad effect: many (resonances, orbit, ...)

For demonstration simplified model:

one dimension

treat head-on interactions only in the first step

first order in beam-beam strength ξ

no other non-linearities



Standard and simplified collision scheme
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Tune scan results (from 2006)



Tune scan results (from 2006)

In horizontal tune scan: two bad regions visible around

working point

Dynamic aperture reduced by up to 5 σ

Questions:

Which resonances ? 4/13 and 5/16

Can they be compensated by adjusting the phase

advance ?



Start with single IP

Interaction point at beginning (end) of the ring (very

local interactions, δ-functions )

”Classic” (B.C.) approach:

s-dependent Hamiltonian and perturbation theory:

H = .... + δ(s)εV

Disadvantages:

for many IPs endless mathematics

can lead to stupid conclusions (e.g. 4th order

resonance cannot be driven by sextupoles)

conceptually and computationally easier method



Effect on invariants - start with single IP

Look for invariants h, (see e.g. Chao1)), and evaluate for

different number of interactions and phase advance.

Very well suited for local distortions (e.g. beam-beam kick)

Linear transfer e:f2: and beam-beam interaction e:F :, i.e.:

e:f2: · e:F : = e:h:

with

f2 = −
µ

2
(
x2

β
+ βp2

x)

and

F =

∫ x

0

dx′f(x′)

1) A. Chao, Lecture Notes on Topics in Accelerator Physics, 2001



Effect on invariants

using for a Gaussian beam f(x):

f(x) =
2Nr0

γx
(1 − e

−x
2

2σ
2 )

as usual go to action angle variables Φ, A:

x =
√

2AβsinΦ, p =

√

2A

β
cosΦ

and write F(x) as Fourier series:

F (x) =
∞∑

n=−∞

cn(A)einΦ



We need:

REMEMBER: with this transform:

f2 = −µA

and useful properties of Lie operators (any textbook2)):

: f2 : g(A) = 0, : f2 : einΦ = inµeinΦ, g(: f2 :)einΦ = g(inµ)einΦ

and the formula (any textbook2)):

e:f2: e:F : = e:h: = exp

[

: f2 +

(
: f2 :

1 − e−:f2:

)

F + O(F 2) :

]

2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998



Single IP

gives immediately for h:

h = −µA +
∑

n

cn(A)
inµ

1 − e−inµ
einΦ

h = −µA +
∑

n

cn(A)
nµ

2sin(nµ
2 )

e(inΦ+i nµ
2 )

away from resonance normal form transformation gives:

h = − µA + c0(A) = const.

[

homework :
dc0(A)

dA

]



Single IP - analysis of h

h = −µA +
∑

n

cn(A)
nµ

2sin(nµ
2 )

e(inΦ+i nµ
2 )

On resonance:

Q =
p

n
=

µ

2π

with cn 6= 0:

sin(
nπp

n
) = sin(pπ) ≡ 0 ∀ integer p

and h diverges



Collision scheme - two IPs
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Two IPs

two transfers f1
2 , f2

2 and two beam-beam kicks F 1, F 2,

first IP at µ1, second IP at µ:

= e:f1
2 : e:F 1: e:f2

2 : e:F 2: = e:h2:

= e:f1
2 : e:F 1: e−:f1

2 : e:f1
2 : e:f2

2 : e:F 2: = e:h2:

= e:f1
2 : e:F 1: e−:f1

2 : e:f2: e:F 2: e−:f2: e:f2: = e:h2:

= e:e
−:f1

2
:
F 1: e:e−:f2:F 2: e:f2: = e:h2:

f2 = − µA, f1
2 = − µ1A, and f2

2 = − µ2A



Two IPs

here a miracle occurs (remember g(: f2 :)einΦ = g(inµ)einΦ):

e:f1
2 :einΦ = einµ1einΦ = ein(µ1+Φ)

i.e. the Lie transforms of the perturbations are phase

shifted2). Therefore:

e:e
−:f1

2
:
F 1: e:e−:f2:F 2: e:f2: = e:h2:

becomes simpler with substitutions of Φ1 = Φ + µ1 and

Φ = Φ + µ in F 1 and F :

e:F 1(Φ1):e:F (Φ):e:f2: ⇒ e:F 1(Φ1)+F (Φ):e:f2:

2) E. Forest, ”Beam Dynamics, A New Attitude and Framework”, 1998



Two IPs

gives for h2:

h2 = −µA +
∞∑

n=−∞

nµcn(A)

2sin(nµ
2 )

e−in(Φ+µ/2+µ1) + e−in(Φ+µ/2)

h2 = −µA + 2c0(A) +
∞∑

n=1

2nµcn(A)

2sin(nµ
2 )

cos(n(Φ +
µ

2
+

µ1

2
))cos(n

µ1

2
)

︸ ︷︷ ︸

interesting part

Nota bene, because of:

e:F (Φ):e:f2: e:F 1(Φ1)+F (Φ):e:f2:

can be generalized to more interaction points ...



Invariant versus tracking

Is it useful what we obtained ?

Debug and compare (”benchmark”)

Compare to very simple tracking program:

linear transfer between interactions

beam-beam kick for round beam

compute action I = β∗

2σ2 ( x2

β∗
+ p2

xβ∗)

and phase Φ = arctan( px

x )

compare I with h



Invariant from tracking: one IP
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Invariant versus tracking: one IP
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Invariant versus tracking: two IPs
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Invariant versus tracking: two IPs
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Two IPs - analysis of h2

h2 ≈
∑

n

2nµcn(A) ·
cos(nµ1

2 )

2sin(nµ
2 )

· cos(n(Φ +
µ

2
+

µ1

2
))

For phase advance µ1 = π
2 · k and n divisible by 4:

resonant

For n = 2· (odd integer) finite

Q = 4/13 can be cancelled, Q = 5/16 can not



Invariant versus tracking: two IPs
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Two IPs - analysis of h2

h2 ≈
∑

n

2nµcn(A) ·
cos(nµ1

2 )

2sin(nµ
2 )

· cos(n(Φ +
µ

2
+

µ1

2
))

For phase advance µ1 = π
2 · k and n divisible by 4:

resonant

For n = 2· (odd integer) finite

Q = 4/13 can be cancelled, Q = 5/16 can not

Which precision is needed for µ1 = π
2 ?

Unfortunately LHC has many interaction points



Sensitivity: h2(µ), 13th order
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Sensitivity: h2(µ), 13th order
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Sensitivity: h2(µ), 13th order
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Sensitivity: h2(µ), 13th order
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Another approach

Confidence in the method, but difficult to interprete for

MANY interactions points (e.g. at N interaction points

at azimuth Θi, not equally spaced)

Invariant can be found in a form like1):

h ≈ N · ξ · U(A) + S · Vn(A) · cos(nΦ)

S describes the periodicity and can be re-written as:

S =

√
√
√
√(

N∑

i=1

cos(p · Θi))2 + (
N∑

i=1

sin(p · Θi))2

(Θi is the azimuthal position of the ith beam-beam

interaction, p is azimuthal harmonic)
1) W. Herr, LHC Project Report 49 (1996)



Full two-fold symmetry
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Full two-fold symmetry



Two-fold symmetry with phase error



Full four-fold symmetry



Four-fold symmetry with phase error



LHC collision scheme with eight-fold symmetry



LHC collision scheme with eight-fold symmetry and phase error



LHC collision scheme with nominal optics



LHC optics with long range



Conclusions

Potentially some resonances (not all) can be suppressed

by good choice of phase advance

Suppression needs tight control of the phase advance

Including a second dimension was studied and makes it

worse

LHC is a dirty machine:

Additional IPs (2 and 8)

Long range effects

PACMAN effects

Cannot rely on suppression


