Consequences of phase advance differences

between IPs on beam-beam effects

W. Herr, D. Kaltchev

Werner Herr, LCU, 26.03.2007

Effect of phase advance between beam-beam interactions

- **Possible good effect: suppression of some resonances**
- Possible bad effect: many (resonances, orbit, ...)
 - For demonstration simplified model:
 - → one dimension
 - → treat head-on interactions only in the first step
 - \rightarrow first order in beam-beam strength ξ
 - no other non-linearities

Tune scan results (from 2006)

Start with single IP

Interaction point at beginning (end) of the ring (very local interactions, δ -functions)

"Classic" (B.C.) approach:

s-dependent Hamiltonian and perturbation theory:

$$\mathcal{H} = \dots + \delta(s)\epsilon V$$

Disadvantages:

• for many IPs endless mathematics

 can lead to stupid conclusions (e.g. 4th order resonance cannot be driven by sextupoles)

conceptually and computationally easier method

Effect on invariants - start with single IP

Look for invariants h, (see e.g. Chao¹⁾), and evaluate for different number of interactions and phase advance. Very well suited for local distortions (e.g. beam-beam kick) Linear transfer $e^{:f_2:}$ and beam-beam interaction $e^{:F:}$, i.e.:

$$e^{:f_2:} \cdot e^{:F:} = e^{:h:}$$

with

$$f_2 = -\frac{\mu}{2}(\frac{x^2}{\beta} + \beta p_x^2)$$

and

$$F = \int_0^x dx' f(x')$$

 $^{(1)}$ A. Chao, Lecture Notes on Topics in Accelerator Physics, 2001

1

Effect on invariants

using for a Gaussian beam f(x):

$$f(x) = \frac{2Nr_0}{\gamma x} (1 - e^{\frac{-x^2}{2\sigma^2}})$$

as usual go to action angle variables Φ , A:

$$x = \sqrt{2A\beta}\sin\Phi, \qquad p = \sqrt{\frac{2A}{\beta}}\cos\Phi$$

and write F(x) as Fourier series:

$$F(x) = \sum_{n = -\infty}^{\infty} c_n(A) e^{in\Phi}$$

We need:

REMEMBER: with this transform:

$$f_2 = -\mu A$$

and useful properties of Lie operators (any textbook²):

 $: f_2 : g(A) = 0, \qquad : f_2 : e^{in\Phi} = in\mu e^{in\Phi}, \qquad g(: f_2 :)e^{in\Phi} = g(in\mu)e^{in\Phi}$

and the formula (any $textbook^{2}$):

$$e^{:f_2:} e^{:F:} = e^{:h:} = \exp\left[:f_2 + \left(\frac{:f_2:}{1 - e^{-:f_2:}}\right)F + \mathcal{O}(F^2):\right]$$

 $^{(2)}$ E. Forest, "Beam Dynamics, A New Attitude and Framework", 1998

Single IP

gives immediately for h:

$$h = -\mu A + \sum_{n} c_n(A) \frac{in\mu}{1 - e^{-in\mu}} e^{in\Phi}$$

$$h = -\mu A + \sum_{n} c_n(A) \frac{n\mu}{2\sin(\frac{n\mu}{2})} e^{(in\Phi + i\frac{n\mu}{2})}$$

away from resonance normal form transformation gives:

$$h = -\mu A + c_0(A) = const.$$

$$\left[homework: \quad \frac{dc_0(A)}{dA}\right]$$

Single IP - analysis of h

$$h = -\mu A + \sum_{n} c_n(A) \frac{n\mu}{2\sin(\frac{n\mu}{2})} e^{(in\Phi + i\frac{n\mu}{2})}$$

On resonance:

$$Q = \frac{p}{n} = \frac{\mu}{2\pi}$$

with $c_n \neq 0$: $\sin(\frac{n\pi p}{n}) = \sin(p\pi) \equiv 0 \quad \forall integer p$

and h diverges

Two IPs

 \rightarrow two transfers f_2^1, f_2^2 and two beam-beam kicks F^1, F^2 , first IP at μ_1 , second IP at μ :

$$= e^{:f_2^{1:}} e^{:F^{1:}} e^{:f_2^{2:}} e^{:F^{2:}} = e^{:h_2:}$$

$$= e^{:f_2^{1:}} e^{:F^{1:}} e^{-:f_2^{1:}} e^{:f_2^{1:}} e^{:f_2^{2:}} e^{:F^{2:}} = e^{:h_2:}$$

$$= e^{:f_2^{1:}} e^{:F^{1:}} e^{-:f_2^{1:}} e^{:f_2^{1:}} e^{:F^{2:}} e^{-:f_2:} e^{:f_2:} = e^{:h_2:}$$

$$= e^{:e^{-:f_2^1:}F^1:} e^{:e^{-:f_2^1:}F^2:} e^{:f_2^1:} = e^{:h_2^1:}$$

$$f_2 = -\mu A, \quad f_2^1 = -\mu_1 A, \quad and \quad f_2^2 = -\mu_2 A$$

Two IPs

here a miracle occurs (remember $g(: f_2 :)e^{in\Phi} = g(in\mu)e^{in\Phi}$):

$$e^{:f_2^1:}e^{in\Phi} = e^{in\mu_1}e^{in\Phi} = e^{in(\mu_1+\Phi)}$$

i.e. the Lie transforms of the perturbations are phase $shifted^2$). Therefore:

$$e^{:e^{-:f_2^1:}F^1:} e^{:e^{-:f_2:}F^2:} e^{:f_2:} = e^{:h_2:}$$

becomes simpler with substitutions of $\Phi_1 = \Phi + \mu_1$ and $\Phi = \Phi + \mu$ in F^1 and F:

$$e^{:F^1(\Phi_1):}e^{:F(\Phi):}e^{:f_2:} \Rightarrow e^{:F^1(\Phi_1)+F(\Phi):}e^{:f_2:}$$

 $^{(2)}$ E. Forest, "Beam Dynamics, A New Attitude and Framework", 1998

gives for h_2 :

$$h_2 = -\mu A + \sum_{n=-\infty}^{\infty} \frac{n\mu c_n(A)}{2\sin(n\frac{\mu}{2})} e^{-in(\Phi + \mu/2 + \mu_1)} + e^{-in(\Phi + \mu/2)}$$

$$h_2 = -\mu A + 2c_0(A) + \underbrace{\sum_{n=1}^{\infty} \frac{2n\mu c_n(A)}{2\sin(n\frac{\mu}{2})}\cos(n(\Phi + \frac{\mu}{2} + \frac{\mu_1}{2}))\cos(n\frac{\mu_1}{2})}_{\text{interacting part}}$$

interesting part

Nota bene, because of:

$$e^{:F(\Phi):}e^{:f_2:} \longrightarrow e^{:F^1(\Phi_1)+F(\Phi):}e^{:f_2:}$$

can be generalized to more interaction points ...

Invariant versus tracking

Invariant from tracking: one IP

 \rightarrow Shown for $5\sigma_x$ and $10\sigma_x$

Invariant versus tracking: one IP

 \rightarrow Shown for $5\sigma_x$ and $10\sigma_x$

Invariant versus tracking: two IPs

 \rightarrow Shown for $5\sigma_x$ and $10\sigma_x$

Invariant versus tracking: two IPs

• one resonance: $\mathbf{Q}_x = \mathbf{0.33}$

Two IPs - analysis of h_2

$$h_2 \approx \sum_n 2n\mu c_n(A) \cdot \frac{\cos(n\frac{\mu_1}{2})}{2\sin(n\frac{\mu}{2})} \cdot \cos(n(\Phi + \frac{\mu}{2} + \frac{\mu_1}{2}))$$

• For phase advance $\mu_1 = \frac{\pi}{2} \cdot k$ and *n* divisible by 4: resonant

• For
$$n = 2$$
 (odd integer) finite

$$\rightarrow$$
 Q = 4/13 can be cancelled, Q = 5/16 can not

Invariant versus tracking: two IPs

0.306	0.3062	0.3064	0.3066	0.306	5 0.3062	0.3064	0.3066
MwMy	MMM	MwMy	MwMy	MyM	MMM	MM	MMM
0.3068 MWM	0.307 MWM	0.3072 ₩₩₩₩	0.3074 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.306 MyM	8 0.307 V WW	0.3072	0.3074 MM
0.3076	0.3078	0.308 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.3082 MMwMM	0.307 MM	6 0.3078 V WW	0.308 MM	0.3082 MMM
0.3084	0.3086	0.3088	0.309	0.308	4 0.3086	0.3088	0.309
MhynMy	Marana	MyMy	MM	MM	V WW	MM	MMM
0.3092	0.3094	0.3096	0.3098	0.309	2 0.3094	0.3096	0.3098
MrM	MrM	MyMy	MMM	MM	V WWW	MM	MMM
0.31	0.3102	0.3104	0.3106	0.31	0.3102	0.3104	0.3106
MwMy	MMM	MwWy	WWW	MM	V WWW	WWW	WWW
0.3108	0.311	0.3112	0.3114	0.310	8 0.311	0.3112	0.3114
WwW	WwW	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩₩₩₩₩	WWW	V WWW	WWW	₩₩₩₩
0.3116	0.3118	0.312	0.3122	0.311	6 0.3118	0.312	0.3122
₩₩₩₩	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WWW	//////	V WWW	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.3124	0.3126	0.3128 MMM	0.313 MMM	0.312	$\begin{array}{c} 4 & 0.3126 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.3128 MMM	0.313 MMM

$$\rightarrow$$
 For μ_1

$$= 0.2604$$

and $\mu_1 = 0.2500$

Two IPs - analysis of h_2

$$h_2 \approx \sum_n 2n\mu c_n(A) \cdot \frac{\cos(n\frac{\mu_1}{2})}{2\sin(n\frac{\mu}{2})} \cdot \cos(n(\Phi + \frac{\mu}{2} + \frac{\mu_1}{2}))$$

• For
$$n = 2$$
 (odd integer) finite

$$\rightarrow$$
 Q = 4/13 can be cancelled, Q = 5/16 can not

Which precision is needed for $\mu_1 = \frac{\pi}{2}$?

Unfortunately LHC has many interaction points

Another approach

Confidence in the method, but difficult to interpret for MANY interactions points (e.g. at N interaction points at azimuth Θ_i , not equally spaced)

Invariant can be found in a form $like^{1}$:

$$h \approx N \cdot \xi \cdot U(A) + S \cdot V_n(A) \cdot \cos(n\Phi)$$

S describes the periodicity and can be re-written as:

$$S = \sqrt{(\sum_{i=1}^{N} \cos(p \cdot \Theta_i))^2 + (\sum_{i=1}^{N} \sin(p \cdot \Theta_i))^2}$$

(Θ_i is the azimuthal position of the ith beam-beam interaction, p is azimuthal harmonic)

 $^{(1)}$ W. Herr, LHC Project Report 49 (1996)

Full two-fold symmetry

Two-fold symmetry with phase error

Full four-fold symmetry

Four-fold symmetry with phase error

LHC collision scheme with eight-fold symmetry

LHC collision scheme with eight-fold symmetry and phase error

LHC collision scheme with nominal optics

LHC optics with long range

Conclusions

- Potentially some resonances (not all) can be suppressed by good choice of phase advance
 - Suppression needs tight control of the phase advance
- Including a second dimension was studied and makes it worse
 - LHC is a dirty machine:
 - \rightarrow Additional IPs (2 and 8)
 - → Long range effects
 - → PACMAN effects
 - Cannot rely on suppression