Beam crossing and performance for upgrade optics' with $\beta^* = 0.25$ m

W. Herr, R. deMaria, M. Meddahi

Werner Herr, LCU, 13.06.2007

Collision optics'

— Three optics' (Riccardo):

- -> Compact optics
- → Modular optics
- \rightarrow Small β_{max}
- Can we make the crossing scheme ?
 - Possible performance (luminosity)

Historical note:

LHC parameters in February 1989 (3 experiments):

 \rightarrow $\beta^* = 0.25$ m, bunch spacing 15 ns (but E = 8 TeV)

Abandoned because:

Necessary crossing angle large and difficult to make (aperture)

→ Strong geometric reduction of luminosity

→ Moved to $\beta^* = 0.50$ m, bunch spacing 25 ns

 \rightarrow Normalized separation \approx 7 σ

But: no correct crossing scheme available for tracking

After detailed studies present scheme with \approx 10 σ

For crossing schemes:

Boundary conditions:

- \rightarrow Minimum separation in drift space: 10 σ
- \rightarrow No aperture limit considered in triplet or D1
- → Keep possible strength in orbit correctors, requires the use of MCBX
- → Assume no early separation scheme
- → Assume nominal parameters ($\epsilon^*, \sigma_s \dots$)
- Avoid too large effective crossing angle, if possible

Reminder:

$$d_{sep}^{drift}~pprox~rac{lpha~\cdot~\sqrt{eta^*}}{\sqrt{\epsilon}}$$

$$\frac{\mathcal{L}(\alpha=0)}{\mathcal{L}(\alpha)} = \mathbf{F} \approx \sqrt{1 + (\frac{\alpha\sigma_s}{2\sigma_c})^2} = \sqrt{1 + (\frac{\alpha\sigma_s}{2\epsilon\beta^*})^2}$$

 \rightarrow To small α : not enough separation

- \rightarrow To large α : little (or no) luminosity gain
- → LHC: ($\alpha \approx 142.5 \ \mu rad$, $\beta^* \approx 0.55 \ m$): F ≈ 1.20

Geometrical loss for constant separation

Long range interactions

Parasitic encounters \rightarrow

- For compact and small β_{max} assume same as nominal
- **For modular lattice:**
 - → Distance between IP and D1 larger
 - \rightarrow More parasitic interactions (≈ 50)

Collision scheme - orbits

Collision scheme - separation

Collision scheme - normalized separation

small beta max lattice

Small beta max:

For separation in drift space of 10 σ :

 $\rightarrow \alpha \approx \pm 220 \ \mu rad$

→ Standard use of MCBX at Q1, strengths all within limits

→ More aperture required in triplet

- → With $\beta^* = 0.25$: F = 1.81
- \rightarrow Luminosity gain in practice only $\approx 47 \%$
- Overall separation similar to nominal optics

Compact:

For separation in drift space of 10 σ :

 $\rightarrow \alpha \approx \pm 220 \ \mu rad$

→ Need MCBX at Q1 and Q2 to keep strengths all within limits

→ More aperture required in triplet

→ With $\beta^* = 0.25$: F = 1.81

- \rightarrow Luminosity gain in practice only $\approx 47 \%$
- Overall separation similar to nominal optics

Modular optics - orbits

Modular optics - normalized separation

modular lattice separation (norm.)

Modular optics crossing

Crossing in modular optics more delicate:

- \rightarrow More long range interactions (50 per IP)
- → Region of low separation extended (second drop)
- → Cannot increase crossing angle at IP: no luminosity gain any more !

Modular optics crossing

- Increase separation near D1, keep effective crossing angle at IP small (!)
 - → Use MCBX to decrease crossing angle at IP (i.e. larger separation for distant parasitic interactions for given crossing angle)
 - → At the expense of corrector strength behind Q4, Q5, Q6
 - → Need about double strength in MCBC, MCBY near Q4, Q5, Q6

Collision scheme - separation

modular lattice

Collision scheme - normalized separation

Summary 1

- Crossing schemes are possible with:
 - \rightarrow Increased aperture in triplet and D1
 - → Much stronger orbit correctors for modular optics
- Moderate gain in luminosity
 - Beam-beam does not allow reduced crossing angle
 - → Long range compensation required

Other options ?

Flat beams:

- → Increased β^* in plane of separation, smaller crossing angle needed
- → Luminosity gain smaller, but also the reduction factor
- → SPS in 1990: $(\beta_x, \beta_y) = (0.60 \text{ m}, 0.15 \text{ m})$
- \rightarrow but: optically possible ?, coupling ?, ...

Summary 2

- Crossing schemes are possible for all options with hardware changes (apertures, correctors)
- $The \beta^* = 0.25 m may help to get to 10^{34} cm^{-2} s^{-1}$
 - \rightarrow Large \mathcal{L} increase requires small crossing angle (early separation, long range compensation ?)
- **Expected behaviour of "compact" and "small** β_{max} " similar to nominal
- "Modular" or flat beam options need analysis via tracking, if not considered hopeless