Trip Report: RHIC Transverse Beam Transfer Function measurements

T. Pieloni

BTF measurements

BTF: tune distributions of colliding beams, amplitude response of the beams $\langle x \rangle$ as a function of exciting frequency Ω

>Beam: set of oscillators with transverse tune distribution $ho(\omega)$

>External driving force $A\cos(\Omega t + \phi)$

A CALLER DATE AND A DA

BTF during store: Beam-Beam BTF MEASUREMENT Fill 7909 pp Run06

Simulation tools: COMBI

- I. Analytical Linear Model (ALM)
- II. Rigid Bunch Model (RBM)
- III. Parallel Multi Particle Simulation (MPS) + BTF routine

The states and and

T. Pieloni

Tune spectra from RBM Fill 7915:

T. Pieloni

Tune spectra from MPS:

BTF ON: Nominal Bunch

Tune

Tune

BTF ON: SuperPacman bunch

Why SuperPacman bunches?

 Bunch amplitude response measure with stripline pickup: single bunch measurement, takes signal from bunch with highest intensity
 SuperPacman bunches loose less, therefore are the most intense

A CONTRACT OF THE STATE OF THE

Conclusions:

- COMBI code benchmarked with experimental data give good agreement in simplified case as RHIC
- BTF measurements are now reproduced and understand number and location of peaks:
 - BTF measurements excite coherent modes which are Landau damped
 - RHIC BTF measurements clear signature of SuperPacman bunches therefore it's very important to know which bunch is measured
- Chromaticity and non linear field errors effects
 understudy

Collider description:

Run parameters:

collision: coll LHC.in filling: fill_ref_1.in fill_ref_2.in number of turns: 124000 number of ips: 88 bunches to kick: 1015 bunches to measure: 1001 2017 QX0: 63.3200 QY0: 58.3100 beam-beam parameter: 0.0025

Collision pattern:

#Collision scheme LHC (for filling scheme LHC) 1 -2 -15 +15 447 3 8.046 6.940 8.032 6.920 892 -2 -0 +0 2229 3 23.015 21.821 23.125 21.821 3565 2 -15 +15 4902 3 23.533 20.689 23.533 20.689 6235 2 -0 +0 6684 3 7.716 7.870 7.736 7.820

State of the second of the state of the second seco

Beam filling scheme:

#Bunch filling example LHC #Number of groups

720807218072180300 00 721807218072180300 00 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0 721807218072180300 00 721807218072180300 00 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0 721807218072180300 00 721807218072180300 00 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0 721807218072180300 00 721807218072180300 00 72 1 8 0 72 1 8 0 72 1 8 0 72 1 39 0

Other action codes:

- 4 only long range interactions5 excitation (white noise, defined kicks)
- 8 BPMs
- 9 AC excitation (for BTFs)

T Pieloni

. Analytical Linear Model

Solve eigenvalue problem of 1 turn map

 $\sin\left(\Delta\mu_{x}^{b_{2}}\right)$

 $\cos\left(\Delta \mu_x^{b_2}\right)$

0

0

. . .

0

0

 $\cos\left(\Delta\mu_{u}^{b_{2}}\right)$

 $-\sin\left(\Delta \mu_{u}^{b_{2}}\right)$

- Linearized HO or LR B-B kick
- Coupling factor

 b_x

k

. . .

0

0

 $\sin\left(\Delta\mu_{u}^{b_{2}}\right)$

 $\cos\left(\Delta\mu_{u}^{b_{2}}\right)$

. . .

. . .

. . .

. . .

. . .

One Turn Matrix \implies $M_C = T_1 * B_1 * T_2 * B_2 * \dots$

 $\cos\left(\Delta\mu_x^{b_2}\right)$

 $-\sin\left(\Delta\mu_{x}^{b_{2}}\right)$

0

0

. . .

T =

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

. . .

. . .

A CONTRACT OF AND A DESCRIPTION OF A DES

. Analytical linear model

Solving the eigenvalue problem, like for a system of coupled oscillators:

Eigenvalues: give the system dipolar mode eigenfrequencies (tune):

II. Rigid Bunch Model

$$\Delta(X_1)' = \frac{2r_p N_p}{\gamma} \frac{\beta_x}{\sigma_{X_2}^2} F_{X_2}(X_1 - X_2, Y_1 - Y_2, \sigma_{X_2}^2, \sigma_{Y_2}^2)$$

□ Between BBI: linear transfer (rotation in phase space) and anything else (transverse kick from collimators, kickers...)

□Fourier analysis of the bunch barycentres turn by turn gives the tune spectra of the dipole modes

Multi Particle Simulations

Bunches: N_{tot} (10⁴-10⁶) macro particles

BBI: each particle of bunch (X_1, Y_1) receives a transverse kick from bunch (X_2, Y_2) and vice versa.

BB kick: solving the Poisson equation for any distribution of charged particles (FMM) or Gaussian approximation:

$$(X_1, Y_1)$$
 (X_2, Y_2)

$$\Delta(x_1)' = \frac{2r_p N_p}{\gamma} \frac{\beta_x}{\sigma_{X_2}^2} F_{X_2}(x_1 - X_2, y_1 - Y_2, \sigma_{X_2}^2, \sigma_{Y_2}^2)$$

Between the BBIs: linear transfer (rotation in phase space) and anything else (kickers, collimators, BTF device, etc)

T. Pieloni

COMBI MPS to Parallel mode

- MPI-protocol
- Master/Slave Architecture
- Clusters: EPFL MIZAR (448 CPUs) and EPFL BlueGene (8000 CPUs)

□ MASTER:

- Controls propagation of the bunches
- Controls the calculation for the interactions of bunches

Slaves:

- Store the macro-particle parameters and perform calculation when an action is required from the MASTER :
 - □ Single bunch action: do not need information from opposite bunch
 - Double bunch action: need information barycentre and field from opposite bunch.

A STATE AND A AD A COMMAND

