IR multipolar correction and DA studies for the LHC upgrade

R. Tomás \& R. de Maria

Thanks to S. Fartoukh and T. Risselada

$$
\text { LCU - } 1^{\text {st }} \text { of August } 2007
$$

Motivation \& Goal

- Large spectrum of LHC upgrade options
- IR multipolar errors could deteriorate DA:
- Error routines still being debugged!

Therefore we would like:

- General IR multipolar correction package that is:
- optics independent and
- corrector order/type independent
- Existing Stephane's filter could not be upgraded by us

Why not use MADX-PTC to get IR map coefficients?

The map \& the observable

$$
\vec{x}_{f}=\sum_{j k l m n} \vec{X}_{j k l m n} x_{0}^{j} p_{x 0}^{k} y_{0}^{l} p_{y 0}^{m} \delta_{0}^{n}
$$

To assess how much two maps, X and X^{\prime} deviate from each other the following quantity is defined:

$$
\chi^{2}=\sum_{j k l m n}\left\|\vec{X}_{j k l m n}-\vec{X}_{j k l m n}^{\prime}\right\|
$$

Weighting can be implemented. To disentangle the contribution of the different orders on χ^{2} :

$$
\chi_{q}^{2}=\sum_{j+k+l+m+n=q}\left\|\vec{X}_{j k l m n}-\vec{X}_{j k l m n}^{\prime}\right\|
$$

This is computed with the Python code MAPCLASS.

Correction

- MADX provides $\vec{X}_{j k l m n}$ to arbitrary order.
- $\vec{X}_{j k l m n}$ is the IR transfer map without errors
- $\vec{X}_{j k l m n}^{\prime}$ is the IR transfer map with errors
- Correction of order q is achieved by minimizing χ_{q}^{2} using $2 q$-pole correctors.
- 2 correctors per IR side and per corrector type have been assumed hereafter.

Optics: modular

Optics: lowbeta

DA comparison: modular \& lowbeta

LHC modular \& lowbetamax comparison

LowBetaMax case needs verification...

Correction: χ_{q}^{2} for the modular

Correction versus angle

LHC modular, seed 1

Correction versus seed

LHC modular

Conclusions

- A general correction package has been developed based on the computation of map coefficients
- It works for the modular option: raises minimum DA from 12σ to 14.5σ
- It needs more tests and refinements
- Studies for lowbetamax and compact pending

