Simulation of transverse multi-bunch instabilities of proton beams in LHC

Abridged and adapted version 27.08.2007

Alexander Koschik

Technische Universität Graz, Austria & CERN Geneva, Switzerland

Graz University of Technology Erzherzog-Johann-University

- Motivation
- Simulation Techniques & Approximations
- Resistive Wall Impedance Models
- Measurements in CERN SPS & Comparison to Simulation
- LHC simulated
- Summary

Stability analysis normally done in frequency domain.

Simulation additionally allows:

- Non-equidistant filling schemes
- Investigate Transition Effects
- Interplay between different effects (impedances)

- Long-Range Effects
- Correct and efficient implementation of corresponding impedances

The Simulation

"Classical" Tracking Code Linear Transfer Matrices + Kicks

	$\tau \gg \sigma_{\tau}$
Long-Range regime:	$\sigma_{ au}$ bunch length
	au time interval for wake calc.

Impedances with correspondingly long-lasting wake fields:

- Resistive Wall Impedance (with 'inductive bypass')
- Narrow-Band Impedances (HOMs of cavities, wakes of cavity-like structures)

The Simulation / Approximations

- 1 Detailed Bunch
- Multiple Bunches represented by 1 super-particle

rigid bunch approximation

 $W_{pot}(\tau) \approx W(\tau)$

wake function approximation

$$W_{pot}^{\parallel}(\tau) = \int_{0}^{\infty} dt \ W_{\parallel}(t) \ \lambda(\tau - t) \qquad \approx W_{\parallel}(\tau) \text{ for } \tau \gg \sigma_{t}$$
$$W_{pot}^{\perp}(\tau) = \frac{1}{\bar{\xi}} \int_{0}^{\infty} dt \ W_{\perp}(t) \ \xi(\tau - t) \ \lambda(\tau - t) \qquad \approx W_{\perp}(\tau) \text{ for } \tau \gg \sigma_{t}$$

Impedance modelled by 1 kick per turn^a Iumped impedance approximation

a K. Thompson and R. D. Ruth. *Transverse coupled bunch instabilities in damping rings of high-energy linear colliders*. Phys. Rev., D43:3049-3062, 1991.

The Simulation / Wake Summation Problem

The kick $\Delta x'$ on bunch *j* at turn *n*, in the case of the resistive wall impedance:

FFT Convolution

Analogy between wake sum and (discrete) convolution:

$$\Delta x'_{n}^{0} = \sum_{k=0}^{n-1} \frac{\langle x \rangle_{k}}{\sqrt{(n-k) \cdot \tau_{rev.}}} = \sum_{k=0}^{n-1} g(k) \cdot f(n-k) \qquad \text{(single bunch case)}$$

$$\begin{array}{ll} \mbox{Continuous Convolution} & h(t) = g * f \equiv \int_{-\infty}^{\infty} d\tau \; g(\tau) f(t-\tau) \\ \mbox{Discrete Convolution} & h(n) = g * f = \sum_{k=0}^{N-1} g(k) \, f(n-k) = \sum_{k=0}^{N-1} g_k \, f_{n-k} \\ \mbox{Convolution Theorem} & \mathcal{F}[f * g] = \mathcal{F}[f] \mathcal{F}[g] \quad \mbox{or} \quad f * g = \mathcal{F}^{-1}\left[\mathcal{F}[f] \mathcal{F}[g]\right] \end{array}$$

Compute wake sum via the FFT convolution in frequency domain:

$$\Delta x'_{n}^{0} = h_{n} = (g * f)_{n} = \sum_{k=0}^{N-1} g_{k} f_{n-k} \quad \xleftarrow{FFT}_{IFFT} \quad G_{j}F_{j} = H_{j}$$

FFT Convolution

Circular Convolution

Linear Convolution

To get the correct wake sums, linear convolution has to be realized by zero padding.

Multi-Bunch Multi-Turn Convolution Scheme

i	-15 -14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f(i)	$f_1^{-1} f_2^{-1}$	f_{3}^{-1}	\mathbf{f}_{0}	f_1	\mathbf{f}_2	f_{3}	0	0	0	0	0	0	0	0	f_0^{-1}	f_1^{-1}	f_2^{-1}	f_{3}^{-1}	\mathbf{f}_{0}	f ₁	f_2	f_{3}	0	0	0	0	0	0	0	0
g(i)															\mathbf{g}_{0}	g ₁	g ₂	\mathbf{g}_{3}	0	0	0	0	0	0	0	0	0	0	0	0
f(0-i)	0 0	0	0	0	0	0	0	f_3	\mathbf{f}_2	\mathbf{f}_1	\mathbf{f}_{0}	f_{3}^{-1}	f_{2}^{-1}	f_{1}^{-1}	f_0^{-1}	0	0	0	0	0	0	0	0	f_{3}	f_2	f_1	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}
f(1-i)	0	0	0	0	0	0	0	0	f_3	f_2	f_1	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0	0	0	f_{3}	f_2	f_1	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}
f(2-i)		0	0	0	0	0	0	0	0	f_{3}	\mathbf{f}_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_{2}^{-1}	f ₁ ⁻¹	f_0^{-1}	0	0	0	0	0	0	0	0	f_3	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}
f(3-i)		-	0	0	0	0	0	0	0	0	f_{3}	\mathbf{f}_2	f ₁	f_0	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0	0	0	f_3	f_2	f_1	\mathbf{f}_{0}
f(4-i)				0	0	0	0	0	0	0	0	f_{3}	\mathbf{f}_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0	0	0	f_3	f_2	f_1
f(5-i)					0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f ₁ ⁻¹	f_0^{-1}	0	0	0	0	0	0	0	0	f_3	f_2
f(6-i)						0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0	0	0	f_3
f(7-i)							0	0	0	0	0	0	0	0	f_{3}	f ₂	f ₁	\mathbf{f}_0	f_{3}^{-1}	f_2^{-1}	f ₁ ⁻¹	f_0^{-1}	0	0	0	0	0	0	0	0
f(8-i)								0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0	0
f(9-i)									0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0	0	0
f(10-i)										0	0	0	0	0	0	0	0	f_3	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f ₁ ⁻¹	f_0^{-1}	0	0	0	0	0
f(11-i)											0	0	0	0	0	0	0	0	f_3	\mathbf{f}_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0	0
f(12-i)												0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0	0
f(13-i)													0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0	0
f(14-i)														0	0	0	0	0	0	0	0	f ₃	f_2	f_1	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}	0
f(15-i)															0	0	0	0	0	0	0	0	f_{3}	f_2	f ₁	\mathbf{f}_{0}	f_{3}^{-1}	f_2^{-1}	f_1^{-1}	f_0^{-1}
-																														
h(i)															h _o	h₁	h ₂	h₃	h_4	h_{5}	h_{6}	h ₇	h ₈	h ₉	h_{10}	h_{11}	h_{12}	h_{13}	$h_{_{14}}$	h_{15}

FFT Convolution

Search GCD (greatest common divisor) of given bucket layout. Defines new, equidistant bunch pattern. mask.

Set up extended zero-padded arrays f'^{c} .

Precalculate FFTs of f^c for $c = 0, ..., n_{mem}$, this gives arrays $F^c = \mathcal{F}[f^c]$

At turn n do the following:

Write (signal, offsets) to array g_i use mask.

FFT of $g, G^{c=0} = \mathcal{F}[g]$

Multiply
$$\forall c \in [0, n_{mem}]$$
: $H^c = F^c \cdot G^c$

Inv. FFT
$$\forall c \in [0, n_{\mathsf{mem}}]: h^c = \mathcal{F}^{-1}[H^c]$$

Sum over n_{mem} turns to get the kicks, use the mask: $\Delta x'_{n}^{j} = \sum_{c=1}^{n_{\text{mem}}} h_{j+N_{b}}^{c} + h_{j}^{c=0}$.

Speed Considerations

Direct Summation

$$\left(2n_{\mathsf{mem}}+1\right)N_b^2+N_b$$

FFT Convolution

 $(n_{\rm mem} + 2) 4N_b \log 4N_b + (5n_{\rm mem} + 5)N_b$

Classical thick & thin wall formula known to be incorrect for $\omega \to 0$.

$$Z_{m=1}^{\perp,\,\text{thick}}(\omega) = (\operatorname{sgn}\omega + j) \, \frac{Z_0 \, L \, \delta_0 \, \mu_r}{2 \, \pi \, b^3} \cdot \sqrt{\frac{\omega_0}{|\omega|}}$$
$$Z_{m=1}^{\perp,\,\text{thin}}(\omega) = \frac{c \, L}{\pi \, b^3 \, \sigma_c \, d \cdot \omega}$$

Measured^a Transverse Resistive Wall Impedance Real (left) and Imaginary (right) part

а

A. Mostacci, F. Caspers, and U. Iriso. Bench measurements of low frequency transverse impedance. CERN-AB-2003-051-RF. Proc. of PAC 03, Portland, Oregon, 12-16 May 2003.

Resistive Wall Impedance with 'inductive bypass' (L.Vos)

$$Z_{m=1}^{\perp,\,\text{LV}}(\omega) = \frac{Z_0 \,L}{2 \,\pi \,b^2} \cdot \left[\frac{b\omega\mu_0}{2Z_0} \cdot \frac{1 + \frac{Z_0}{Z_1} \tanh\gamma_1 d_1}{1 + \frac{Z_1}{Z_0} \tanh\gamma_1 d_1} - j\right]^{-1}$$

$$Z_{\perp}^{\mathsf{ibp}} = \frac{2c}{b^2\omega} \cdot \frac{Z_{\parallel} Z_{\mathsf{ind}}}{Z_{\parallel} + Z_{\mathsf{ind}}}$$

Quasi-Static Beam Model (Burov/Lebedev) Solving Maxwell Equations, Poisson equation for electric dipole and vector potential for magnetic dipole

$$Z_{m=1}^{\perp,\mathsf{BL}}(\omega) = j \, \frac{Z_0 \beta L}{\pi b^2} \frac{\mathbf{S}_1' + \tilde{\kappa}_{2,1} \mathbf{S}_1}{\mathbf{S}_1' + \tilde{\kappa}_{2,1} \tilde{\kappa}_{1,0} \mathbf{C}_1 + \tilde{\kappa}_{2,1} \mathbf{S}_1 + \tilde{\kappa}_{1,0} \mathbf{C}_1'}$$

Field Matching (B.Zotter)

Solution of Maxwell's equation by matching 4 components at every layer. Most rigorous but lengthy or only numeric expressions.

Standard Parameter Range: $b \gg d$

LHC Collimators: $b \ll d$

Usual regime : $d, \delta < a$

New regime : $d \gg a$, $\delta \leq d$

Standard parameter range: Wall thickness d is smaller than beam pipe radius a, and the skin depth δ for all frequencies under concern is smaller than d.

New regime: Wall thickness d is *larger* than beam pipe radius a, and the skin depth δ is in the order of d for low frequencies.

Resistive Wall Wake Function

$$Z_{m=1}^{\perp, \text{thick,ibp}}(\omega) = (1+j \operatorname{sgn} \omega) \frac{c \mu_0 L}{2 \pi b^2} \frac{1}{-j + \operatorname{sgn} \omega \left(1 + b \sqrt{\frac{\sigma_c \mu_0}{2 \mu_r}} \sqrt{|\omega|}\right)}$$

Fourier Transform (not straightforward!)
$$W_{m=1}^{\perp, \text{thick,ibp}}(t) = \underbrace{+ \frac{cL}{\pi^{3/2} b^3} \sqrt{\frac{\mu_o \mu_r}{\sigma_c}} \cdot \frac{1}{\sqrt{|t|}}}_{\text{classic thick wall wake function}}$$
$$- \exp\left[\frac{4 \mu_r}{b^2 \sigma_c \mu_0} |t|\right] \frac{2cL \mu_r}{b^4 \pi \sigma_c} \cdot \left(1 - \operatorname{Erf} \sqrt{\frac{4 \mu_r}{b^2 \sigma_c \mu_0}} |t|\right)$$

correction term due to inclusion of inductive bypass

Measurement Pa	_	Тур	ICa	
Fixed Target Beam	SPS @ inj.]	3000 г	
Momentum p [GeV/c]	14		-	
Revolution time $ au_{rev.}$ [μ s]	23.07		2000	
Tunes Q_H/Q_V	26.64 / 26.59		-	Late
Gamma transition γ_T	23.2	.u.]	1000	~: •
Maximum # of batches	2) [a.	-	1.11.1
# of bunches per batch	2100	(ion)	0	-
Bunch Intensity N_p	$4.8\cdot 10^9$	osit	-	
Total Intensity $N_{p,tot}$.	$1.0 - 2.0 \cdot 10^{13}$	d)	-1000	<u> </u>
Batch spacing [ns]	1050	gna		
Bunch spacing [ns]	5	∿-siç	-2000	-
Full bunch length [ns]	4	<		•
Trans. emittance $\epsilon_{H,V}$ [μ m]	$<\!10/<\!7.5$		-3000	-
Long. emittance ϵ_L [eVs]	0.2			
		-	0	

Typical vertical BPM readings for growth rate measurements

1 Batch (2100 bunches)	Growth rate $2\pi/ au$ [turns]	Coherent tune Q			
Vertical Plane	77 ± 4	0.5927 ± 0.0079			
Horizontal Plane	183.5 ± 23.5	0.6180 ± 0.0029			

SPS elliptic vacuum chamber geometry \rightarrow Yokoya factors included! Wake is not only dependent on exciting charge's offset, but also on witness particle offset:

$$W_{\perp,x}^{\text{pot}}(x, y, \bar{x}, \bar{y}, s) \approx x W_{\perp}^{\text{pot}}(x, s) + \bar{x} W_{\perp}^{\text{pot}}(\bar{x}, s)$$
$$W_{\perp,y}^{\text{pot}}(x, y, \bar{x}, \bar{y}, s) \approx y W_{\perp}^{\text{pot}}(x, s) + \bar{y} W_{\perp}^{\text{pot}}(\bar{y}, s)$$

Vertical Amplitude Growth, SPS FT beam, $n_b = 2100$ (1 batch)

Vertical Amplitude Growth, SPS FT beam, $n_b = 4200$ (2 batches)

A. Koschik, Simulation of transverse multi-bunch instabilities of proton beams in LHC - p.19

Coupled Bunch Modes, SPS FT beam, $n_b = 2100$ (1 batch)

Coupled Bunch Modes, SPS FT beam, $n_b = 4200$ (2 batches)

A. Koschik, Simulation of transverse multi-bunch instabilities of proton beams in LHC - p.20

Simulation of LHC

Amplitude growth of individual bunches vs. Turns Machine Resistance only, LHC Injection Energy, nominal Intensity

Machine Resistance + Collimators, LHC Injection Energy, nominal Intensity

Coupled-bunch mode spectra vs. Turns

at injection energy and nominal intensity Machine Resistance + Collimators, LHC Injection Energy, nominal Intensity

Amplitude growth and coupled-bunch mode spectra vs. Turns HOMs of 200MHz cavities, LHC Injection Energy, nominal Intensity

Coupled-bunch mode spectra vs. Turns Machine Resistance + Collimators + HOMs and Octupoles LHC Top Energy, ultimate Intensity

Non-linearities through octupoles \rightarrow tune spread \rightarrow Landau damping

	LHC injection energy									
		Nominal	Ultimate							
	Mode n	Growth Time $ au_{turns}$ [turns]	Mode n	Growth Time $ au_{ ext{turns}}$ [turns]						
Resistive Wall Classic	3504	659.2 ± 8.7	3504	453.7 ± 6.8						
Resistive Wall Classic + Collimator		< 10 turns	< 7 turns							
Resistive Wall Inductive Bypass	3504	677.5 ± 8.7	3504	466.6 ± 7.2						
Resistive Wall Inductive Bypass + Collimator	3149	167.8 ± 5.3	3149	115.8 ± 4.1						
	3189	160.0 ± 4.6	3189	110.4 ± 3.6						
	3241	158.6 ± 3.9	3241	109.7 ± 3.0						
	3281	161.6 ± 3.2	3281	112.0 ± 2.7						
	3373	162.2 ± 4.3	3373	119.0 ± 3.5						
	3413	167.3 ± 4.5	3413	124.9 ± 3.7						
	(3504)	(357.8 ± 395.3)	(3504)	(261.5 ± 259.8)						
HOMs	160	1441.1 ± 114.9	160	994.0 ± 11.9						

	LHC top energy									
		Nominal		Ultimate						
	Mode n	Growth Time $ au_{turns}$ [turns]	Mode n	Growth Time $ au_{turns}$ [turns]						
Resistive Wall Classic	3504	10073.5 ± 1029.0	3504	9191.2 ± 523.8						
Resistive Wall Classic + Collimator	3504	44.4 ± 40.9	3504	29.3 ± 29.3						
Resistive Wall Inductive Bypass	3504	10592.1 ± 1571.8	3504	8340.3 ± 911.2						
Resistive Wall Inductive Bypass + Collimator	3464	7057.2 ± 4342.9	3464	4957.9 ± 3753.4						
	3465	6451.6 ± 7658.7	3465	4464.3 ± 5719.9						
	3504	7352.9 ± 3746.8	3504	4310.3 ± 2285.2						
HOMs		no growth visible	no growth visible							
Resistive Wall + Collimator + OCT		damped	damped							

Summary of growth rates.

Summary

- Simulation code MultiTRISIM developed
- Efficient implementation of wake summation via
 FFT Convolution
- Resistive wall impedance models in a new parameter regime $\delta_{skin}, d > b$
- Resistive wall wake function with 'inductive bypass' computed and used in simulation
- Code benchmarked with measurements in CERN SPS
- Simulation of LHC. Present octupole design should provide enough Landau damping to stabilize beam at top energy.