

Chromatic phase space cuts from collimation Ralph Assmann, Chiara Bracco

Outline

 Nominal 7TeV lowbeta optics: beta beat in the first half of the ring (IP1→IP5) beta beat in the second half of the ring (IP5→IP1)

 Beta beat and collimation: definition of the effective betatron amplitude cut and allowed phase space

- IP1→IP5 case: cleaning and retraction (extensively)
- IP5→IP1 case: cleaning and retraction (results)
- TCT and IR7 collimators at nominal+3 σ setting
- Upgrade optics
- Conclusions
- All the studies refer to Beam1, Beam2 case is equivalent

Off momentum beta beat IP1→IP5

140

120

100

80

60

40

 $\Delta \beta_{x}/\beta_{x0}|$ @collimators [%]

Horizontal plane

Nominal 7 TeV Lowbeta Optics: All crossings ON All separations OFF

system, "ln -s /afs/cern.ch/eng/lhc/optics/V6.501 dn"; call, file="dn/magic_phases15.thin.b1.str";

Chiara Bracco, Ralph Assmann

-0.00/

-0.003

0.000

+0.001

+0.002

Off momentum beta beat IP5→IP1

140

120

100

80

Horizontal plane

Nominal 7 TeV Lowbeta Optics: All crossings ON All separations **OFF**

system, "ln -s /afs/cern.ch/eng/lhc/optics/V6.501 dn"; file="dn/magic phases51.thin.bl.str";

Chiara Bracco, Ralph Assmann

0.00

-0.003 -0.002 -0.001

0.000

 $+0.00^{\circ}$ +0.002

+0.003 +0.003

Off momentum beta beat IP5→IP1

Chiara Bracco, Ralph Assmann

Amplitude cut

How does the off momentum beta beat influence the collimation system setting?

The collimator jaws are always centered respect to the closed orbit.

The jaws "cut" all the particles oscillating with an amplitude $A_x \ge |x_{cut}|$ (horizontal plane). $x_{cut} \equiv$ half gap[mm] is calculated for $\delta=0$ and fixed (our nominal setting)!

 $\mathbf{A}_{\mathbf{x}}$ is determined by the sum of two contributions :

- Betatron oscillation amplitude: $n_{1}/\epsilon_{x}\beta_{x}(\delta)$
- Dispersion function: $D_x(\delta) \cdot \delta$

Same considerations are valid for the vertical plane (y_{cut} , A_y , β_y , D_y)

For the nominal collimation setting, the effective <u>betatron</u> amplitude cut at each collimator $(n_{\beta_x cut}(i_{coll}))$ changes as function of δ , β_x and D_x !!

We can express the cut in the phase space $\textbf{x}_{cut}(\textbf{i}_{coll}\,,\,\delta)$ as:

$$\mathbf{x}_{\mathsf{cut}}\left(\mathbf{i}_{\mathsf{coll}}\right) = \mathbf{n}_{\beta_{\mathsf{x}}\mathsf{cut}}\left(\mathbf{i}_{\mathsf{coll}},\delta\right) \sqrt{\varepsilon_{\mathsf{x}}\beta_{\mathsf{x}}\left(\mathbf{i}_{\mathsf{coll}},\delta\right)} + \mathbf{D}_{\mathsf{x}}\left(\mathbf{i}_{\mathsf{coll}},\delta\right) \delta$$

From which we can then explicitly derive $n_{\beta_{xcut}}(i_{coll})$ as:

positive and negative x jaws

Plot $n_{\beta_{xcut}}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Project

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1 -> IP5)

Plot $n_{\beta_x cut}(i_{coll})$ vs δ

An other example: TCP.6L3.B1

(Horizontal primary momentum cleaning collimator, beta beat IP1→IP5)

Plot $n_{\beta_x cut}(i_{coll})$ vs δ

Going back to: TCP.C6L7.B1 (Horizontal primary betatron collimator, beta beat IP1→IP5)

LHC Collimation

Project

Plot $n_{\beta_{xcut}}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat $IP1 \rightarrow IP5$)

Plot $n_{\beta_{xcut}}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Plot $n_{\beta_{xcut}}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat $IP1 \rightarrow IP5$)

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat $IP1 \rightarrow IP5$)

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Plot $n_{\beta_{x}cut}(i_{coll})$ vs δ

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat $IP1 \rightarrow IP5$)

Allowed phase space region

Allowed phase space region

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Momentum aperture in the ring: $\pm 7 \cdot 10^{-3} [\delta]$ (mechanical aperture, tolerances, orbit, 3σ beam)

Half height of the bucket : $\pm 0.35 \cdot 10^{-3}$ [δ] [E. Shaposhnikova, S. Fartoukh, B. Jeanneret "LHC abort gap filling by proton beam"; *LHC project report t 63*]

Allowed phase space region

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1 -> IP5)

Allowed phase space region

TCP.C6L7.B1

(Horizontal primary betatron collimator, beta beat IP1→IP5)

Overlapping all the horizontal collimators:

Each solid line represent one collimator jaw.

Each color represent one collimator family (legend)

The phase space is limited by the jaws of the two horizontal TCP (TCP.6L3, TCP.C6L7)

Overlapping all the horizontal collimators:

Each solid line represent one collimator jaw.

Each color represent one collimator family (legend)

The phase space is limited by the jaws of the two horizontal TCP (TCP.6L3, TCP.C6L7)

Overlapping all the horizontal collimators:

Each solid line represent one collimator jaw.

Each color represent one collimator family (legend)

The phase space is limited by the jaws of the two horizontal TCP (TCP.6L3, TCP.C6L7)

Overlapping all the vertical collimators:

The limitation in δ comes from the horizontal plane.

At -1.5‰ the allowed phase space is reduced by 0.8σ

IR7 TCSG-TCP retraction [σ]

TCSG-TCP retraction: Half-gap_{TCSG} [σ] - Half-gap_{TCP} [σ]

Nominal half-gap ($\beta = \beta_0$) in IR7: TCSG =7 σ TCP= 6σ

• No retraction reduction for the horizontal secondary collimators

• 0.3_☉ reduction for vertical TCSG retraction → tighter tolerances in operation!

IR7 TCLA/TCTH-TCSG retraction [σ]

Nominal half-gap ($\beta=\beta_0$) in IR7: TCSG =7 σ TCLA =10 σ TCTH/V= 8.3 σ

Horizontal TCLA-TCSG:
1.8σ reduction → Worrisome!

Horizontal TCTH-TCSG:
0.5σ reduction

tighter tolerances!!

- TCP.6L3:cuts all the particles with $\delta < -1.3\%$ (A_x=4.1 σ), $\delta > 1.4\%$ (A_x=2.2 σ)
- TCP.C6L7:cuts all the particles with -1.3 ‰ < δ <1.4 ‰
- Primary collimators cut at: -1.8‰, 1.7 ‰
- Collimators retraction:

 \bullet Retraction reduction down to 0.7σ between horizontal TCP and TCSG

• TCSG becoming a primary in the vertical plane for $\delta \ge 0.8$ ‰

Worse than IP1→IP5 beta beat case from the collimation point of view!!

Decision: off momentum beta beat IP1→IP5

Off momentum Beta beat IP1→IP5

Collimator setting:

	ТСР	TCSG	TCLA
IR3	15σ	18σ	20 σ
IR7	9σ	10 σ	13σ
	TCTH/V		
IR1/2/5/8	11.3σ		

$\bullet~0.07\sigma$ retraction reduction for the horizontal TCSG

$\bullet~0.3\sigma$ retraction reduction for the vertical TCSG

Off momentum Beta beat IP1→IP5

Collimator setting:

	ТСР	TCSG	TCLA
IR3	15σ	18σ	20 σ
IR7	9σ	10 σ	13σ
	TCTH/V		
IR1/2/5/8	11.3σ		

Upgrade optics Beta beat IP1→IP5

Collimator setting:

	ТСР	TCSG	TCLA
IR3	15σ	18σ	20σ
IR7	6σ	7σ	10 σ

- Lowbetamax optics
- Crossing ON
- Separation OFF

No stable solution for $\delta <-2 \%$ and $\delta >2 \%$

Primary collimators cut at: 1.3‰ IR7 secondary collimator cuts at -1.36 ‰

Upgrade optics Beta beat IP1→IP5

Collimator setting:

	ТСР	TCSG	TCLA
IR3	15σ	18σ	20σ
IR7	6σ	7σ	10σ

Retraction:

Conclusion

• We considered collimation criteria for defining the best solution for beta beat correction: in the first or in the second half of the ring

• For the collimators set to one physical gap (calculated with δ =0) the effective cut in betatron amplitude changes as function of δ , β_x and $D_x \rightarrow$ formalism was derived to define the allowed phase space region

• IP1 \rightarrow IP5 beta beat optics is preferred (otherwise problems in the vertical retraction)

The reduction in operational margin was evaluated for the nominal optics with IP1→IP5 beta beat: up to 60% of retraction lost with off momentum particles.
Extremely important result for commissioning: better understanding of

possible collimator settings during commissioning (my PhD thesis)

• Even higher loss of operational margin when opening collimators.

• Will be worse for the upgrade optics with higher off momentum beta beat. Works on going!