Update on resistive wall transverse impedance measurements at low frequency (graphite samples and PIMs)

F.Caspers, E.Metral, T.Kroyer, F.Roncarolo, B.Salvant LCU - 03-Dec-2007

Acknowledgments

AB/ABP

G.Arduini, R. Assmann, C. Carli, M.Chanel, M. Giovannozzi

AB/ATB

O. Aberle, P. Francon, Y. Kadi, R. Beltron, J. Garcia Perez

AB/BI

E. Bravin, P. Lavanchy, T. Lefevre

AB/CO C. Leroy-Jonckx, J. Serrano

AB/OP S.Redaelli

AB/RF A. Boucherie, A. Findlay, M. Morvillo, C. Rossi

TS/SU H. Mainaud-Durand, D. Missiaen

R.Jones (The Univ. of Manchester – Cockcroft Institute) P. Mc Intosh (Daresbury Lab)

Motivations

- Measurements mainly motivated by outstanding issues
 - Benchmark most recent theories predicting resistive wall transverse impedance of poor conductor materials, at low frequency
 - Assess phase I collimator transverse impedance and support phase II design
 - verify PIMs RF fingers transverse impedance effect due to contact resistance

Theory

Resistive wall transverse impedance in a "regime" where

1-beam distance from the wall = half gap < wall thickness

2-skin depth < wall thickness

Down to frequencies of the orther of the first LHC betatron unstable frequency , $\sim 8 \ \text{kHz}$

Theory

- Complex transverse impedance depends on:
 - Material conductivity
 - Material thickness (+ single or multi layering/coating)
 - Distance between the beam and the material
 - Beam pipe cross section
 - cylindrical
 - collimator-like

Measurement method

Coaxial wire method to estimate transverse impedance

- single wire displaced at different transverse positions
- two wires

has low sensitivity at low frequencies

Extension of two wires method:

Evaluation of the transverse impedance of a DUT by measuring the inductance variation of a probe coil

F.Caspers, A.Mostacci, L.Vos http://lhcp.web.cern.ch/lhcp/LCC/LCC_2002-01.htm#main3a

F.Caspers, A.Mostacci, U.Iriso

Bench Measurements of Low Frequency Transverse Impedance, CERN-AB-2003-051-RF

Measurement method

Measured quantity: the complex impedance of a coil in the presence of a perturbing material

From measurements:

 $\vec{Z}^{DUT}(\omega)$ low conductivity material (graphite) $\vec{Z}^{REF}(\omega)$ high conductivity material (copper)

6

N.B. : geometric part of impedance is equal for the two materials

$$\vec{Z}_T(\omega) = \vec{Z}_{meas}(\omega) = \vec{Z}_{RW}^{graphite}(\omega) - \vec{Z}_{RW}^{copper}(\omega)$$

We apply a simple data
processing to plot :
$$\vec{Z}_{RW}^{graphite}(\omega) = \vec{Z}_{meas}(\omega) + \vec{Z}_{RW}^{copper}(\omega)$$

F.Roncarolo - LCU - 3-Dec2007

Measurement stages

1. Sample graphite plates

Towards completion

- Test measurement method sensitivity t low frequencies
- Test 2 different instruments for the coil impedance determination
 - Vector network analyzer
 - LCR impedance meter
 - Test coils differing in
 - Length and width
 - number of windings

2. Stand-alone jaws

- Starts now measurements with actual LHC collimators material and dimensions
 - Requires long coil (>= 1.2 m)

3. Collimator assembly

- Measurements with LHC available collimator prototype(s)
 - Requires even longer coil (>=1.4m)
 - Use of collimator control system: once the coil is well aligned, the jaw position will be precisely known

F.Roncarolo - LCU - 3-Dec2007

From Jan 08

Measurement setup

DUTs and Refernces

Vector Network Analyzer (VNA)

Measurement Setup

The two "best" coil prototypes produced and tested until now:

	Wire Diameter [mm]	Length (L) [cm]	Width (∆) [mm]	N turns
COIL #1	0.5	30	2.5	9
COIL #2	0.5	45	4.5	19

Measurement setup

Graphite (DUT) and Copper (REFERENCE) plates

 $10 \text{ cm} \times 15 \text{ cm} \times 1 \text{ cm}$

Remarks for understanding (and appreciating ...) the results

- VNA and LCR are two different instruments measuring the coil impedance with two different methods
- Each set of measurements normally implies realignment of graphite and copper plates
- The measurements that will be presented
 - Were taken with copper and graphite plates shown earlier
 - were taken during several weeks (many manipuations and diffenret conditions in between)

Remarks for understanding (and appreciating ...) the results

In almost all results two plots will be presented:

1. "RAW DATA"
$$\vec{Z_T}$$

$$\begin{aligned} \vec{Z}_T(\omega) &= \frac{c}{\omega} \frac{\vec{Z}^{DUT}(\omega) - \vec{Z}^{REF}(\omega)}{N^2 \Delta^2} \\ \vec{Z}_T(\omega) &= \vec{Z}_{meas}(\omega) = \vec{Z}_{RW}^{graphite}(\omega) - \vec{Z}_{RW}^{copper}(\omega) \end{aligned}$$

2. "PROCESSED DATA" $\vec{Z}_{RW}^{graphite}(\omega) = \vec{Z}_{meas}(\omega) + \vec{Z}_{RW}^{copper}(\omega)$

This assumes RW transverse impedance of copper as known.

--> assumption is surely correct down to the frequency where classical thick wall and new theories agree for copper (< 10KHz in the plots presented here, I.e. half gap = 5mm)

RESULTS Signals as measured by the two instruments

Example of measured signals: real part of coil impedance in the presence of copper and graphite

Looking at the difference ZDUT-ZREF at low frequencies: noise may become ~ =signal !

RESULTS

Compare instruments - VNA vs LCR

LCR results less noisy

 to compare the two instruments in a proper way one should check the real averaging time of the two instruments

In the all the following plots: we used the LCR only

First coil resonance -->Method not anymore valid

RESULTS

Measure different thicknesses

- with 1 cm thickness:
 - skin depth > thickness and theory not valid anymore?
 - --> this is not confirmed by the next slide

RESULTS Change LCR acquisition mode

Averaging time (at each freq.) ACQMODE1 < Averaging time ACQMODE2</p>

- In ACQMODE 2 dependence on thickness is opposite than previous slide
- In ACQMODE 1 dependence on thickness disappears
- In ACQMODE 2, thickness 2cm : perfect agreement with theory down

RESULTS Compare coils

- All measurements taken in ACQMODE1 (fast)
- As expected: COIL #2 (19 turns) better than COIL #1 (9 turns)
 - Drawback: first coil resonance at lower frequency (~1.5MHz)

RESULTS Imaginary part of Zt

Imaginary part fits very well with theory, in all the measurements we performed

Plug In Modules - (PIMs)

- designed with RF fingers
 - to reduce their longitudinal coupling impedance at high frequency,
 - May represent a problem due to their contact resistance = transverse impedance at low frequency
- We are measuring them with the same method used for poor conductor materials
 - to verify if/how the contact resistance varies when they are in their nominal position at "cold" (i.e. during LHC operation)
- Gap is large w.r.t to graphite tests --> Requires a "bigger" coil
 - Two coil prototype already tested
- We have preliminary results indicating that we can measure transverse impedance changes due to PIM extension

PIMs - Preliminary results

Conclusions

SPARE

F.Roncarolo - LCU - 3-Dec2007

23

QuickTime™ and a decompressor are needed to see this picture.

