Low Frequency Transverse Impedance Simulations of Collimators - Preliminary Results

Tom Kroyer, CERN

Thanks to Benoit Salvant, Fritz Caspers, Alexej Grudiev and Elias Metral for inspiring discussionS

LCU, 3. December 2007

Introduction

- The low-frequency transverse impedance of the collimators constitutes a major part of the LHC impedance budget
- The case of graphite collimators in not easy to assess with measurements and theoretical models have been evolving considerably over the last years
- Conventional RF simulation tools face difficulties for frequency ranges below ~1 MHz, however there exist dedicated low frequency solvers, e.g. in CST EM Studio or Ansoft Maxwell. Currently we only have a license of the latter, which was therefore used. Typical applications of these tools are the design of AC transformers or the simulation of non-destructive testing devices using eddy currents

The Model 1

- First a simple graphite structure with rotational symmetry was used: 5 mm half gap
- A two-wire simulation was performed. On all outside boundaries of the structure the magnetic field was set to be purely tangential (perfect conductor). The excitation is done not with a waveguide port as in RF simulations but by defining an ideal current source for each conductor
- In order to get the appropriate field pattern the two wires were excited in phase opposition

The Model 2

- To speed up simulations only the upper right quarter of the structure was modeled, with appropriate boundary conditions to make sure that we get the desired field symmetry
- The maximum mesh size in the graphite was 2 mm, which corresponds to one skin depth at 1 MHz => upper limit of frequency range for graphite; for Cu with the same meshing one can go to about 10 to 100 kHz
- The magnetic field is that of a dipole; it is concentrated in the plane of the two wires => related to horizontal transverse impedance

H field, logarithmic color code

T. Kroyer, CERN

Evaluation

- The code solves Maxwell's Equations directly without theoretical approximations as it seems.
- Once one knows the resulting current density the Ohmic losses can be calculated, which are proportional to the transverse impedance
- In more detail: from the local current density and the resistivity the local Ohmic losses are calculated and integrated over the structure. Then the transmission S₂₁ is calculated, which gives the via the log formula an impedance, from which for a given wire spacing the transverse impedance is obtained

Current density, logarithmic color code

T. Kroyer, CERN

The Physics Picture

- At DC all the current is flowing in the surrounding perfect conductor => the impedance is zero.
- Going from DC to low frequencies currents are induced in the less well conducting regions close to the beam due to Faraday's law rot E = -dB/dt, E ~ f, I ~ f => losses and thus impedance ~ f^2. For the calculation of the transverse impedance one has to divide by f => ZTR ~ f for low frequencies
- At very high frequencies all the currents are flowing on a very thin layer on the inner conductor surface. The impedance increases with frequency with sqrt(f) due to the skin effect => ZTR ~ 1/sqrt(f) for high frequencies.
- Thus somewhere between low and high frequencies ZTR must have a maximum; this maximum appears when the skin depth is about equal to the conductor thickness

Currents

- The situation of the currents leaving the surrounding perfect conductor and getting drawn to the beam at higher frequencies is illustrated below. Please note the log scale.
- At 10 kHz the graphite layer is roughly one skin depth thick; at 1 MHz the currents are concentrated in the innermost layers due to the skin effect. Not very clear here due to the scale...

Considered Structures

Three geometries were considered

 Rotationally symmetric structure for direct comparison with Burov-Lebedev formula

- Two plates, as used in the collimator bench measurements

- A simplified collimator cross-section

- Behind the structure there was either directly a perfect conductor or some space (30 to 220 mm) and a perfect conductor
- The conductor materials graphite (conductivity 6e4 S/m) and copper (conductivity 6e7 S/m) were used
- To limit the memory requirements 5 to 10 mm thick slices were modeled

Results – Comparison to Burov-Lebedev

- Very good agreement between simulation and the Burov-Lebedev theory for various structures with rotational symmetry
- At 100 kHz and above the results for Cu become doubtful due to insufficient meshing in the copper

Results – larger structure length

- Doubling the length from 5 to 10 mm did not noticeably affect the results
- Good convergence was made sure of in the latter case (energy error < 1 %)

LCU 3. Dec. 2007

Results – bench geometry 1

 Comparison between the ZTR expected for the bench measurements and Burov-Lebedev formula for a flat geometry (correction factor π²/8 with respect to round geometry)

Results – bench geometry 2

The simulation as well as the analytical formula show an increase in ZTR when space is added between the graphite and the perfect conductor on the outside boundary. Going from a spacing of 30 to 220 mm does not have a large impact on ZTR

Collimator cross-section

For the simulation of the graphite collimators a quickly simplified geometry was used: The metallic support structure was modeled as a Ushaped channel structure. Graphite in grey, copper in red.

Collimator - Currents

In collimator there are three regimes:
 Low frequencies: skin depth large both in Cu and graphite, most of the current in the copper due to its smaller resistivity
 Intermediate frequencies: skin depth in Cu comparable to Cu thickness => maximum impedance effect of Cu

Results – collimator cross-section

- ZTR shows the
 characteristics of both
 an isolated graphite
 block and a copper
 block at a larger
 distance from the
 beam
- ZTR is dominated by the graphite above 10 kHz and by the copper below a few 100 Hz
- A three-layer analytical calculation shows a similar behaviour

Summary

- The low-frequency solvers of commercial simulation packages can be used for evaluating the collimator transverse impedance at low frequencies
- Very good agreement between the simulation and the Burov-Lebedev formula was obtained for structures with rotational symmetry
- Preliminary results for a structure with graphite blocks as for the current bench measurements as well as for a slice of an LHC graphite collimator were given
- The latter showed characteristics of both the metallic support structure (low frequencies) and the graphite jaws (high frequencies)