Impact of Longitudinal Displacement of Low-Beta Triplets

- Thanks to our colleagues from AT for discussions, the measurements and adjustments of the triplet magnets, in particular: P. Bestmann, L. Bottura, D. Missiaen, R. Ostojic, H. Prin
- The analysis has been done by ABP members:
 - S. Fartoukh: Matching of IR1 & IR5
 - J. Jowett: Matching of IR2
 - M. Giovannozzi: Going into Squeeze
 - R. Tomás: Beta-Beating Correction

Contents

- Measurement of Magnetic Displacements
- Effect of Longitudinal Displacement on Beta-Beating
- Matching of IR1 & IR5
- Matching of IR2
- Effect on Squeeze
- Beta-Beating Correction
- Conclusion

Uncorrected Magnetic Shift in IR5R

		HCLQXA_001-FL000005				HCLQXB_001-FL000003				HCLQXC_001-FL000007		
IP5	1	IP side	Q1R5	NIP side	1	IP side	Q2R5	NIP side	1	IP side	Q3R5	NIP side
Deviation of Beam Screen		-1.84		9.31		-9.08		-7.85		9.7		9.45
Interconnection default	-1.84				-18.39				17.55			
already applied shift			-4		<u> </u>		7		<u> </u>	1	-6	
Interconnection with applied shift	-5.84				-7.39				4.55			
coldmass displacement (due to repair)		l	-0.79				6.6				-0.74	
shiftet intercon. incl. CM-displacement	-5.84	(*)			0.00				-2.79			
shift of the magnetic origine			-4.79				13.6				-6.74	
Cryostat shift due to insulation vacuum			5.4	1	<u> </u>		3.2		-		1.4	
otal shift in cold conditions			0.61				16.8				-5.34	
Difference magnetic position at cold					-16.2				22.14	2		i i i i i i i i i i i i i i i i i i i

negative displacements are indicating a shift towards the IP negative interconnections are indicating a too short interconnection

(*) IP flange of Q1 is ridgit with the cryostat and doesn't move with the coldmass

Measured Longitudinal Displacements (Dec. 2007)

January 2008

LCU 29.01.2008 - Frank Schmidt

Measured Longitudinal Shifts

January 2008

LCU 29.01.2008 - Frank Schmidt

Measured Longitudinal Shifts, except IR5R set to zero

January 2008

LCU 29.01.2008 - Frank Schmidt

6

Measured Longitudinal Shifts, except all IR5R triplets shifted by 16.8mm

January 2008

January 2008

LCU 29.01.2008 - Frank Schmidt

8

Measured Longitudinal Shifts

January 2008

LCU 29.01.2008 - Frank Schmidt

Intermediate Summary

- Measurement and Adjustment of Longitudinal Displacement is
 a complex matter
- Unfortunately the chance was missed to re-adjust IR5R
- Half of the Beta-Beating Budget of 25% is used up just for IR5R
- ➔ Matching is required
- The goal was to stay below 5% which is the case without IR5R
- There may be cancellation of the Beta-Beating from one side of the IR to other. However, one should not rely on it!
- What counts is not a shifting of all 3 triplet assemblies but rather the relative differences
- → 10 mm seems okay while 22 mm is clearly too much

Matching of IR1 & IR5

- The goal is to restore the Twiss parameters at the IP
- And minimize Beta-Beating outside the IR
- The matching is achieved with quadrupoles in the IR however excluding the triplets themselves
- The required powering of these quadrupoles remains well within their limits

January 2008

LCU 29.01.2008 - Frank Schmidt

Matching of IR2

- Fully squeezed ION physics optics with $\beta^* = 0.5 \text{ m}$
- The matching in IR2 is less demanding since the longitudinal displacements are smaller, although still in access of 10mm
- The matching goals are similar
- Matching can be done with small changes of a few percent of the quadrupole strength

Global beta-beating caused by displacements, LHCB1

Global beta-beating after rematching, LHCB1

Squeeze IR5 only

Squeeze IR1 only

- As expected the IR5 leads to much larger deviations from the desired behavior than IR1. Effectively due to IR5R.

- Below $\beta^* = < 4$ m a rematching seems mandatory (done for $\beta^* = 0.55$ m). At least for IR5.

Beta-Beating Correction

- Up to now the measured longitudinal displacements have been discussed. One also has to consider an uncertainty of +/- 5 mm of the magnetic center measurement.
- Measurement and correction of beta-beating is envisaged to cope with this random effect.
- The measurement requires the expected BPM resolution and an operational AC dipole allowing for a 4 σ kick at top energy.

Beta-Beating Correction

Conclusion

- The large relative longitudinal displacement of more than 22 mm in IR5R is eating 50 % of the beta-beating budget.
- It is unfortunate that despite a clear request from ABP and many discussions these adjustments have been postponed until it was too late.
- As result a re-matching is required when squeezing below $\beta^* = < 4m$.
- The longitudinal displacement is about ~12 mm for IR2 (fully squeezed) and leads to a beta-beating of just 5 %. A re-matching may not be required.
- Results for IR8 are still preliminary but the longitudinal displacement are much smaller in this IR.
- Lastly, a beta-beating correction has been attempted and shown to work even without a re-matching, albeit under ideal operational conditions.