Bunch filling schemes for early

running scenarios

M. Ferro-Luzzi and W. Herr

Werner Herr, LHCCWG, 12.02.2008

Issues for bunch filling scheme:

LHC collider issues:
Luminosity
Experimental conditions
Beam-beam effects
Other collective effects
Diagnostics
....
Injector chain (input from Elias, Gianluigi)

Luminosity considerations - reminder

Boundary condition: 4 experiments

- 2 high luminosity experiments try to "maximize" number of useful collisions
- > 2 specialized experiments -> try to "optimize" number of collisions/s
- ▶ all gaps in train symmetric around IP1 and IP5 → no losses in IP1 and IP5, but in IP2 and IP8
- > LHCb: IP8 \neq DELPHI ! (shifted by 1.5 slots), additional losses

Luminosity considerations - reminder

proton-proton operation:

Filling schemes versus beam-beam effects

- Try to maintain a "quasi" 4-fold symmetry
- Minimize number of different classes of bunches (i.e. number of interactions, strength of interactions)
- Allow (passive) compensation of PACMAN effects

Present LHC filling scheme (25 ns):

Present scheme for high (nominal) luminosity with 25 ns spacing, with 72 bunches per batch Usually presented as:

$$[2 * (72b + 8e) + 30e] + [3 * (72b + 8e) + 30e)] + [4 * (72b + 8e) + 31e] + 3 * \{2 * [3 * (72b + 8e) + 30e] + [4 * (72b + 8e) + 31e]\} + 80e = 3564$$

Total 2808 bunches (b), 756 empty spaces (e)

Batches of 72 bunches, trains of 2,3,4 batches in SPS

Requires 12 SPS/LHC transfers per beam

Beam-beam considerations

- LHC is machine with many bunches, dominate beam-beam effects
 - Exact collision schedule needed
 - Precise description needed for self-consistent beam-beam and luminosity computations
 - > Orbits, tune, chromaticity, ... (for each bunch)
 - Coherent motion, measurement response
 - Luminosity optimization
 - Needs more appropriate, flexible description (asymmetries, missing bunches, fluctuations ...)

Filling scheme description

We have 35640 buckets \rightarrow 3564 slots for bunches spaced by 25 ns

How we count:

numbering of bunches according to slot number (or equivalent: bucket number), for any spacing

E.g. 43-bunch scheme: (82, 163, 244, ...)

Filling scheme description

is constructed from some input like (nominal, see e.g. LHC Project Note 344 (2004)):

can be different for the two beams

Collision schedules

For 8-fold symmetry: 445.5 slots between interactions points !

In IP1, IP5 and IP8: collisions of even-even and odd-odd (slots) In IP2 (... and DELPHI): collisions of odd-even and even-odd

▶ for any bunch spacing $\neq 25$ ns → watch out !

The interesting configurations

Consider protons only:

- > Nominal 25 ns spacing no trouble
- For 43 or 156 bunches, optimized for IP1, IP2 and IP5
- > For 75 ns spacing get good collision rate in all IPs (too much for IP2 ?)
- > For 50 ns spacing watch out for IP2 and IP8
- What about crossing schemes ?

Beam separation scheme (e.g. right of IP5):

Beam orbits with D1 (\approx 60 m) and D2 (\approx 160 m) only

Beam separation scheme (25 ns):

 \rightarrow Beam orbits with D1 and D2 only

Beam separation scheme (25 ns):

 \succ Beam orbits with D1, D2 and crossing angle

Beam separation scheme (525 ns, 156 Bunches):

> D1 and D2 only, no crossing angle needed

Collisions in LHC experiments - numerology

> Nominal bunch filling scheme with 25 ns spacing

	collisions
collisions in IP1	2808
collisions in IP2	2736
collisions in IP5	2808
collisions in IP8	2622

Collisions in LHC experiments - numerology

\triangleright Collisions in IPs with 43 (44) equidistant bunches

	collisions
collisions in IP1	43
collisions in IP2	42
collisions in IP5	43
collisions in IP8	0
collisions in DELPHI	42

How to collide in LHCb ?

Have to displace N_s bunches of the N_b bunches

- > IP1,IP5: collide regular-regular, displaced-displaced
- > IP2: collide regular-regular
 - IP8: collide regular-displaced
- **Two strategies:**
 - Displace bunches in one beam
 - Displace bunches in both beams symmetrically
 - Assumptions:
 - Can shift PS to SPS injection (one batch)
 - Can shift SPS to LHC injection (2, 3 or 4 batches)
 - Can replace SPS to LHC injection by single bunch

How to collide in LHCb ?

Have to displace N_s bunches of the N_b bunches

- > IP1,IP5: collide regular-regular, displaced-displaced
- > IP2: collide regular-regular
 - IP8: collide regular-displaced
- **Two strategies:**
 - Displace bunches in one beam
 - **Displace bunches in both beams symmetrically**
 - Assumptions:
 - Can shift PS to SPS injection (one batch)
 - Can shift SPS to LHC injection (2, 3 or 4 batches)
 - Can replace SPS to LHC injection by single bunch

How to collide in LHCb ?

Two strategies:

> Displace bunches in one beam

→ loss of collisions in IP1, IP5 and IP2

> Displace bunches in both beams symmetrically

→ still collide in IP1, IP5, additional losses in IP2

Theoretical maximum for equidistant bunches: $min(N_b - N_s, N_s)$

for 43 bunches \rightarrow can shift up to 22 (6 SPS to LHC injections)

> 21 collisions, but 0 in ALICE

Collisions in LHCb - numerology

Collisions in IPs with 43 equidistant bunches, different displacement strategies

displaced	0	4 ~(asym)	4 (sym)	$11~(\mathrm{sym})$	19 (sym)
IP1	43	39	43	43	43
IP2	42	38	34	21	4
IP5	43	39	43	43	43
IP8	0	4	4	11	19

Collisions in LHCb - numerology

	no bunches	option 1	option 2
	displaced		
collisions in IP1	156	156	156
collisions in IP2	152	76	16
collisions in IP5	156	156	156
collisions in IP8	0	36	68

Bunch spacing 50 ns

- Advantage: high luminosity, much fewer long range interactions
 - Interesting if desired collision rate in IP2 very small
 - Constructing 50 ns spacing from nominal scheme:
 - Start from nominal 25 ns spacing
 - Remove every second bunch of a train, keep first bunch (no collisions in IP8)
 - Shift selected trains (SPS/LHC transfers) by 1 slot to get desired sharing between IP2 and IP8

LHCb collision options:

- a) No shift
- b) Shift SPS/LHC transfers 4 6
- c) Shift SPS/LHC transfers 4 6, 10 12
- d) Shift SPS/LHC transfers 1 3, 7 9
- e) Shift SPS/LHC transfers 2 3, 7 9, replace transfer 1 by one single bunch

Numerology of collisions

> Bunch filling scheme with 50 ns spacing

	a	b	С	d	е
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	2
IP5	1404	1404	1404	1404	1333
DELPHI	1368	684	0	72	2
IP8	0	655	1035	1242	1173

Summary and recommendations

- > Without crossing angle: optimize collision rate in IP1 and IP5 by symmetric displacement in both beams, sharing between IP2 and IP8 can be largely adjusted.
- > valid for 43 and 156 (54) bunches options
- In case $\mathcal{L}(IP2)$ low: modified 50 ns scheme is a good alternative to 75 ns scheme