Bunch filling schemes for early
 running scenarios

M. Ferro-Luzzi and W. Herr

Issues for bunch filling scheme:

\square
LHC collider issues:
Luminosity
Experimental conditions
Beam-beam effects

- Other collective effects
- Diagnostics

Injector chain (input from Elias, Gianluigi)

Luminosity considerations - reminder

Boundary condition: 4 experiments
2 high luminosity experiments \rightarrow try to "maximize" number of useful collisions
$\geqslant 2$ specialized experiments \rightarrow try to "optimize" number of collisions/s
\Rightarrow all gaps in train symmetric around IP1 and IP5 \rightarrow no losses in IP1 and IP5, but in IP2 and IP8

LHCb: IP8 \neq DELPHI ! (shifted by 1.5 slots), additional losses

Luminosity considerations - reminder

proton-proton operation:
ATLAS and CMS: maximum integrated luminosity
LHCb: $\mathcal{L}_{\text {opt }}=\mathbf{2 - 5} \cdot \mathbf{1 0}^{32} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$
ALICE: $\mathcal{L}_{\text {opt }}=\mathbf{1} \cdot \mathbf{1 0}^{29} \mathbf{c m}^{-2} \mathrm{~s}^{-1}$
\rightarrow Requires reduction even for small number of bunches (43)!

Filling schemes versus beam-beam effects

- Aim: minimize bunch-to-bunch variations (orbit, tune, chromaticity ..)
\rangle Try to maintain a "quasi" 4-fold symmetry
- Minimize number of different classes of bunches (i.e. number of interactions, strength of interactions)
- Allow (passive) compensation of PACMAN effects

Present LHC filling scheme (25 ns):

Present scheme for high (nominal) luminosity with 25 ns spacing, with 72 bunches per batch

Usually presented as:

$$
\begin{aligned}
& [2 *(72 b+8 e)+30 e]+[3 *(72 b+8 e)+30 e)]+[4 *(72 b+8 e)+31 e]+ \\
& 3 *\{2 *[3 *(72 b+8 e)+30 e]+[4 *(72 b+8 e)+31 e]\}+ \\
& 80 e=3564
\end{aligned}
$$

\square Total 2808 bunches (b), 756 empty spaces (e)

- Batches of 72 bunches, trains of $2,3,4$ batches in SPS
\square Requires 12 SPS/LHC transfers per beam

Present LHC filling scheme (25 ns):

Beam-beam considerations

LHC is machine with many bunches, dominate beam-beam effects

Exact collision schedule needed
Precise description needed for self-consistent beam-beam and luminosity computations

- Orbits, tune, chromaticity, ... (for each bunch)
- Coherent motion, measurement response
- Luminosity optimization
- Needs more appropriate, flexible description (asymmetries, missing bunches, fluctuations ...)

Filling scheme description

We have 35640 buckets $\rightarrow 3564$ slots for bunches spaced by 25 ns

How we count:
numbering of bunches according to slot number (or equivalent: bucket number), for any spacing
E.g. 43-bunch scheme:
($82,163,244, \ldots$)

Filling scheme description

is constructed from some input like (nominal, see e.g. LHC Project Note 344 (2004)):

$$
\begin{array}{llllllllllllllll}
72 & 0 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 39 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 39 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 39 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 30 & 0 & 0 & 0 \\
72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 8 & 0 & 72 & 1 & 39 & 0
\end{array}
$$

can be different for the two beams

Collision schedules

For 8 -fold symmetry: 445.5 slots between interactions points!

In IP1, IP5 and IP8:
collisions of even-even and odd-odd (slots)
In IP2 (... and DELPHI):
collisions of odd-even and even-odd
\Rightarrow for any bunch spacing $\neq 25 \mathrm{~ns} \rightarrow$ watch out !

The interesting configurations

- Consider protons only:
- Nominal 25 ns spacing - no trouble
- For 43 or 156 bunches, optimized for IP1, IP2 and IP5
\Rightarrow For 75 ns spacing - get good collision rate in all IPs (too much for IP2 ?)
* For 50 ns spacing - watch out for IP2 and IP8
\square What about crossing schemes ?

Beam separation scheme (e.g. right of IP5):

Beam orbits with D1 ($\approx 60 \mathrm{~m}$) and D2 ($\approx 160 \mathrm{~m}$) only

Beam separation scheme (25 ns):

- Beam orbits with D1 and D2 only

Beam separation scheme (25 ns):

Beam orbits with D1, D2 and crossing angle

Beam separation scheme (525 ns, 156 Bunches):

D1 and D2 only, no crossing angle needed

Collisions in LHC experiments - numerology

$>$ Nominal bunch filling scheme with 25 ns spacing

	collisions
collisions in IP1	2808
collisions in IP2	2736
collisions in IP5	2808
collisions in IP8	2622

Collisions in LHC experiments - numerology

Collisions in IPs with 43 (44) equidistant bunches

	collisions
collisions in IP1	43
collisions in IP2	42
collisions in IP5	43
collisions in IP8	0
collisions in DELPHI	42

```
How to collide in LHCb ?
```

Have to displace N_{s} bunches of the N_{b} bunches

- IP1,IP5: collide regular-regular, displaced-displaced
- IP2: collide regular-regular
- IP8: collide regular-displaced
- Two strategies:
- Displace bunches in one beam
- Displace bunches in both beams symmetrically
- Assumptions:
- Can shift PS to SPS injection (one batch)
\Rightarrow Can shift SPS to LHC injection (2, 3 or 4 batches)
\rangle Can replace SPS to LHC injection by single bunch

```
How to collide in LHCb ?
```

Have to displace N_{s} bunches of the N_{b} bunches

- IP1,IP5: collide regular-regular, displaced-displaced
- IP2: collide regular-regular
- IP8: collide regular-displaced
- Two strategies:
- Displace bunches in one beam
- Displace bunches in both beams symmetrically
- Assumptions:
- Can shift PS to SPS injection (one batch)
λ Can shift SPS to LHC injection (2, 3 or 4 batches)
- Can replace SPS to LHC injection by single bunch

How to collide in LHCb ?

- Two strategies:
- Displace bunches in one beam
\rightarrow loss of collisions in IP1, IP5 and IP2
- Displace bunches in both beams symmetrically
\rightarrow still collide in IP1, IP5, additional losses in IP2
- Theoretical maximum for equidistant bunches:
$\min \left(N_{b}-N_{s}, N_{s}\right)$
\Rightarrow for 43 bunches \rightarrow can shift up to 22 (6 SPS to LHC injections)
- 21 collisions, but 0 in ALICE

Collisions in LHCb - numerology

Collisions in IPs with 43 equidistant bunches, different displacement strategies

displaced	0	4 (asym)	4 (sym)	11 (sym)	19 (sym)
IP1	43	39	43	43	43
IP2	42	38	34	21	4
IP5	43	39	43	43	43
IP8	0	4	4	11	19

Collisions in LHCb - numerology

Bunch filling scheme with 156 bunches

	no bunches displaced	option 1	option 2
collisions in IP1	156	156	156
collisions in IP2	152	76	16
collisions in IP5	156	156	156
collisions in IP8	0	36	68

Bunch spacing 50 ns

Advantage: high luminosity, much fewer long range interactions

Interesting if desired collision rate in IP2 very small

- Constructing 50 ns spacing from nominal scheme:
\rangle Start from nominal 25 ns spacing
- Remove every second bunch of a train, keep first bunch (no collisions in IP8)
\Rightarrow Shift selected trains (SPS/LHC transfers) by 1 slot to get desired sharing between IP2 and IP8

LHCb collision options:

a) No shift
b) Shift SPS/LHC transfers 4-6
c) Shift SPS/LHC transfers 4-6, 10-12
d) Shift SPS/LHC transfers 1-3, 7-9
e) Shift SPS/LHC transfers 2-3, 7-9, replace transfer 1 by one single bunch

Numerology of collisions

Bunch filling scheme with 50 ns spacing

	a	b	c	d	e
IP1	1404	1404	1404	1404	1333
IP2	1368	684	0	72	2
IP5	1404	1404	1404	1404	1333
DELPHI	1368	684	0	72	2
IP8	0	655	1035	1242	1173

Summary and recommendations

- Without crossing angle: optimize collision rate in IP1 and IP5 by symmetric displacement in both beams, sharing between IP2 and IP8 can be largely adjusted. valid for 43 and 156 (54) bunches options
\geqslant In case \mathcal{L} (IP2) low: modified 50 ns scheme is a good alternative to 75 ns scheme

