How can we operate IP8

$$
\text { at } 5 \mathrm{TeV} \text { ? }
$$

W. Herr, M. Meddahi, Y. Papaphilippou

Reminder:

IP8 basics:
At collision energy:

- Sign of effective crossing angle fixed and value different for the two spectrometer polarities
- $\beta^{*} \geq 2 \mathrm{~m}$ for both polarities possible

回 At injection energy:

- Without angle: both polarities possible
- With angle: only one polarity at full field, other polarity requires ramping $\propto \mathbf{E}$

Collisions at lower energy?

Collisions at lower energy two cases:

[Without crossing angle:

- For small number of bunches
- Aperture mainly limited by $\hat{\beta}$ (collimation ?)
- Spectrometer polarity not relevant
[With crossing angle:
- For more than 156 bunches
- Aperture mainly limited by crossing angle (and therefore β^{*})
- Look at "wrong" polarity

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy $4 \mathrm{TeV}, \beta^{*}=10 \mathrm{~m}$
- "Wrong" polarity, external angle 干 $330 \mu \mathrm{rad}$

Options:

- Most likely energy: 5 TeV
- Study only "wrong" polarity
- It is of course possible with $\beta^{*}=10 \mathrm{~m}$
- Which is the smallest β^{*} ?
- Find maximum possible crossing angle (compatible with aperture)
- Does it provide sufficient separation (assume 25 ns spacing) ?

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=4 \mathrm{~m}$, external angle $\mp 310 \mu \mathrm{rad}$

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=4 \mathrm{~m}$, external angle $\mp 310 \mu \mathrm{rad}$

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=3 \mathrm{~m}$, external angle $\mp 280 \mu \mathrm{rad}$

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=3 \mathrm{~m}$, external angle $\mp 280 \mu \mathrm{rad}$

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=2 \mathrm{~m}$, external angle $\mp 250 \mu \mathrm{rad}$

Spectrometer(-compensator) bump (\oplus) at IP8

- Energy 5 TeV
- $\beta^{*}=2 \mathrm{~m}$, external angle $\mp 250 \mu \mathrm{rad}$

IP8 crossing scheme parameters

β^{*} \mathbf{m}	External angle $[\mu \mathrm{rad}]$	Effective angle $[\mu \mathrm{rad}]$	n 1	$\operatorname{sep}[\sigma]$	
$\mathbf{1}$	0	378	8.9	-	-
2	0	378	13.4	-	-
2	∓ 250	∓ 61	7.8	5.7	N
3	∓ 280	∓ 91	8.8	9.2	Y
4	∓ 310	∓ 121	8.8	12.5	Y

Conclusion

[Collisions at energies 4-7 TeV are possible
For energy 5 TeV (with crossing angle):

- Both polarities possible
- For $\beta^{*} \geq 3 \mathbf{m}$

Limits from collimation ??

