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A Outline
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 Bound Free Pair Production

— estimated effect

— alleviation proposal

— operational aspects

 Electromagnetic dissociation
— estimated effect

e Conclusion
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A Electromagnetic processes

* During Pb%2* operation in the LHC, electromagnetic
interactions between colliding beams take place at IP:

— Bound Free Pair nroduction (BFPP):
QOSPb82++208Pb82+ l 208Pb82++208Pb8].++e+

oBFPP ~ 281 barn  H. Meier et al., Phys. Rev. A 63.032713 (2001)

— Electromagnetic Dissociation (EMD), 1 or 2 neutrons:

208Pb82+_|_208Pb82—|— L 208Pb82+—|—207Pb82++n

oD~ 215 barn  I.A. Pshenichnov et a/, Phys. Rev. C 64.024903 (2001)

JSIHMD ~ (.20BFPP

Compare: 0,,,,=8 barn
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Magnetic rigidity change

15/7/2007

BFPP and EMD create ions with
altered magnetic rigidity:

ZQA
0 =——(1 6111_1
AUZ( T Oia)

These ions follow locally
generated dispersion function
from IP

Lost in localized spot where
aperture and 0 satisfy

od, = A,

Induced heating risk to quench
superconducting magnets
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BFPP at IP2
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A Effect of BFPP

* FLUKA simulation of shower in main dipole magnet, peak luminosity
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Quench limit in LHC design report!
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A Effect of BFPP (2)

« Some other estimates of quench limit exist, indicating a
factor ~2-3 higher

e However, even if they are correct the energy deposition
from BFPP is at 80% of limit

 Simulation uncertainty: factor ~2

 Uncertainty in quench limit, BFPP cross section and shower
simulation

—Q-uenches induced by the heating from
— - BFPP losses can not be excluded!

——Tp-case these losses cause quenches, we
need to introduce counter measures!
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INA Idea: BFPP alleviation

 BFPP orbit oscillates with dispersion function

 |dea: distribute losses over several impact positions with
closed orbit bumps

 Use existing orbit correctors

60 envelope at IP2, 4 kicks

0100200300400500600700 "0 100 200 300 400 500 600 700
s(m) s(m)

« Example: losses equally distributed over 3 impact position
—faximum heat load in a single element decreases by factor 3
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A Orbit displacements

 Each aperture limitation defines cut in initial phase space

* Integrated phase space population 60F
in each area=1/3 10l
20F
 Formally, the particles lost at E
aperture limitation m contained 5
in region 20
—40F
Rm: C-m$0 + Smpa':() + fEB(Sm) + Am > Am(sm)
~60 _
—_120 —I20 -10 0 ll() 210 30
X (Hm)
e Solve equation system for A_: Phase space at IP2

/ / Ps(xo, pro) daxo dpro = 1/n, ¥V m
R,.N(R§URS...URS, )

1
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X Orbit displacements (2)

* First step analytically solvable

e Ilteration with numeric method gives all
B,
e Once A are known, kicks are easily
found by matching losses

3000
 To distribute losses over n impact 2500

locations, we need 2000
n+17 kicks 1500

1000

 Expected loss pattern confirmed by 500
single particle tracking

: : : : S (m)
400 450 500 550
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Operational aspects

 Maximum deviation of nominal orbit = 3.8 mm
e 6 0 envelope still far from aperture

 Beta beating of 1.7%

 Required corrector settings:

s(m) | A(mm) | 8 (urad) | B(T) | r (%)
307.394 2.23 -17.5 0.45 14.6
386.922 4.06 -28.5 0.74 238
492 .547 -144 | 052 | 17.7
599.444 222 | 080 | 273

Adjustments of 0.1% of total strength necessary
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S Tuning of orbit bumps

 Closed orbit in imperfect machine and aperture errors
change necessary displacement

 Correctors have to be tuned around predicted value,
using BLMs

e Bumps have to be introduced before full luminosity is
reached

e Can be achieved by van der Meer-scan in vertical plane
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INA Tuning of bumps (2)

 Proposed method: start by tuning the
first corrector to have 1/3 lost at first
impact position, let correctors 2 and 3
follow to close the bump

e Tune second correctors to have 'z of
remaining losses lost at second impact

location, let correctors 3 and 4 follow to

close the bump
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2" impact position
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N\ Estimated BLM signals

 Estimate losses at different impact positions by monitoring
BLM signals

 Approximation of expected ratio between BLM signals:
convolution of BLM signal from pencil beam as simulated by
FLUKA and impact positions from tracking
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A Example: Tuning first bump

 Tuning in steps of ~1.3 % of total corrector strength
e Steps of ~0.1% could be necessary for fine-tuning

nominal orbit estimated BLM signals loss positions
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A Example: Tuning second bump

 Tuning in steps of ~1.8% of total corrector strength
e Steps of ~0.1% could be necessary for fine-tuning

nominal orbit s (M) estimated BLM signals loss positions
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 Due to uncertainties, we can not hope to reach exactly 1/3
at each impact position

 More bumps might be needed to compensate
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A Outline

 Electromagnetic processes in the LHC

« BFPP
— estimated effect
— alleviation proposal
— operational aspects

- « Electromagnetic dissociation
— estimated effect

e Conclusion
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A 1-neutron EMD

e 0=-0.0048 is still inside momentum aperture

 These particles can make a full turn and should be
intercepted by collimation system

Tracking with ICOSIM from each IP:
— 99% of EMD particles lost in collimators
— remaining 1% impose no risk of quenching

loss map after IP2

losses
5001/
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A 2-neutron EMD

« 0=-0.0096 is outside momentum aperture

 Particles lost in a well-defined spot on the other side of the
vacuum chamber

 Cross section significantly lower:

J%?’ID ~ (.20BFPP

b5 times lower heating power than BFPP

 Should pose no danger of quenching
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A Conclusion

 lons affected by EMD are very unlikely to be dangerous
* lons affected by BFPP risk to quench magnets

 We propose distributing the losses in several magnets with
orbit bumps

 Operational procedure for tuning the bumps proposed

e Future work: detailed FLUKA simulations of estimated BLM
signals for increased accuracy
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