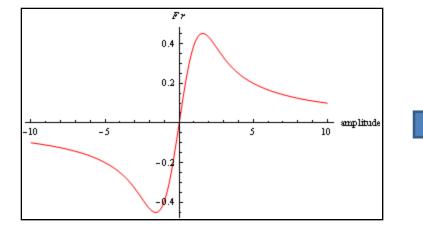
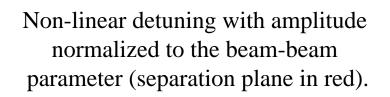
Status report of studies on putting the beams into collisions

H. Burkhardt, S. White.


Motivations

- With the actual LHC configuration it would take ~30 to 40s to bring the beams into collisions.
- \Rightarrow Optimization of the separation bumps from the optics point of view improved this collapsing time to ~20s. Development to increase the dI/dt of the correctors used could improve this time by another factor 2.
- \Rightarrow It is still not sure whether some unwanted effects triggered by the beam-beam interaction would have time to develop.
- ⇒ Detailed multi-particle tracking required to understand the mechanism that may occur while bringing the beams into collisions.


The Beam-Beam Force

The Beam-Beam force for round Gaussian beams can be expressed as:

$$F_{r}(r) = -\frac{ne^{2}(1+\beta^{2})}{2\pi\varepsilon_{0}} \cdot \frac{1}{r} \left[1 - \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) \right]$$

Beam-Beam Force for round Gaussian beams.

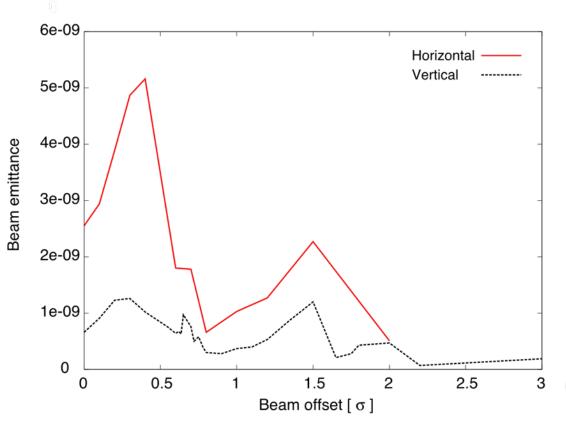
amplitude

Detuning

0.4

0.2

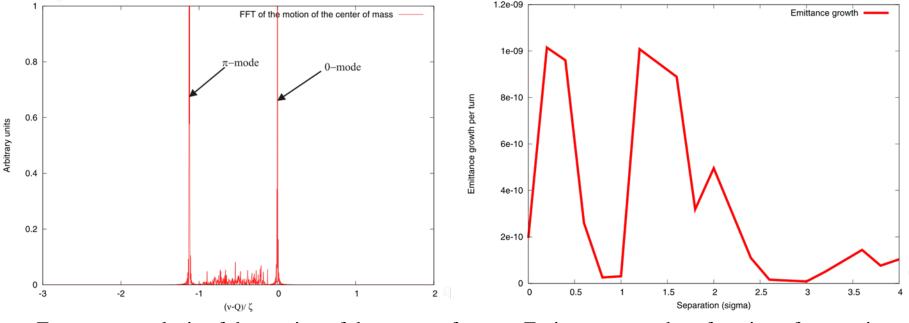
0.2


 \Rightarrow Going through various separations the beams will experience changes in tune and chromaticity.

Tracking code

- A multi-particle strong-strong tracking code was developed for this purpose.
- \Rightarrow One turn matrix tracking.
- \Rightarrow Soft Gaussian approximation.
- \Rightarrow One bunch one IP.
- Possible improvements
- \Rightarrow Use the second order map from MadX for the tracking.
- \Rightarrow See what would be the effect with more than one IP.

Previous Studies


• The study of emittance growth with static offsets was done previously by W. Herr and T. Pieloni.

This plot was done with HFMM (arbitrary distribution) and shows a clear dependency between the emittance and the separation. As a comparison I tried to reproduce the same results with the new code.

Results with the new Code

• The code has been tested and seems to give results in good agreement with previous studies.

Frequency analysis of the motion of the center of mass: Yokoya factor ~1.2 (underestimated by Gaussian model) Emittance growth as function of separation. Static case for 500000 part./500000 turns.

 \Rightarrow 500000 particles instead of 1000000 and the soft Gaussian approximation could explain the differences with the previous plot. \Rightarrow the behavior is similar compared to what was found before.

Conclusions and Future Plans

- Run realistic simulations with the separation varying as a function of time.
- Compare with non-Gaussian case using HFMM (T. Pieloni).
- Look at coherent effects with TRAIN (long range, full LHC).
- Compare all the results and try to give an explanation for the eventual effects.

⇒ A lot of work still needs to be done but all the tools are ready for this study.