impact on e-cloud heat load of wrongly-oriented beam screens

Frank Zimmermann

21 January 2009

local & global cooling limits

L. Tavian, B. Jeanneret, F.Z., 2005

if only a small number of magnets is concerned, the local limit will be more relevant

predicted heat load & average arc cooling capacity vs bunch intensity

H. Maury, August 2008

LHC "sawtooth" chamber

perpendicular photon impact → reduced photoemission yield

effect of sawtooth on photo-electron yield & photon reflection

V. Baglin, I. Collins, O. Grobner, "Photoelectron Yield and Photon Reflectivity from Candidate LHC Vacuum Chamber Materials with Implications to the Vacuum Chamber Design", LHC Project Report 206, 1998

Table 1. Forward scattering photon reflection R and photoelectron yields per absorbed photon, Y^* , of the studied materials under different surface conditioning, irradiated by 45 eV and 194 eV critical energy synchrotron radiation.

		45 eV		194 eV	
Surface	Status	R	Y*	R	Y*
		(%)	(e/ph)	(%)	(e/ph)
Cu	as-received	80.9	0.114	77.0	0.318
co-lam.	air baked	21.7	0.096	18.2	0.180
Cu elect.	as-received	5.0	0.084	6.9	0.078
Cu	as-received	1.8	0.053	-	-
sawtooth	150°C, 9h	1.3	0.053	1.2	0.052
	150°C, 24h	1.3	0.040	1.2	0.040

measurements at CERN EPA, 1998

V.V. Anashin, I.R. Collins, R.V. Dostovalov, N.V. Fedorov, O. Grobner, A.A. Krasnov, O.B. Malyshev, E.E. Pyata, "Magnetic and Electric Field Effects on the Photoelectron Emission from Prototype LHC Beam Screen Material", LHC Project Report 373, 2001

Table 3: A summary of the me	easured reflectivities ar	nd photoelectron	yields per absorbed
photon. The critical energy	at which the measurer	nents were made	is also indicated.

Samula	Critical	Forward Refle	Scattered ection	Diffuse Reflectivity	Photon Adsorption	D	Y (electron/
Sample	Energy E _c (eV)	R_e (by current)	<i>Rw</i> (by power)	Reflectivity	RI	$\frac{R_{dif}}{R_1 + R_{dif}}$	photon)
Smooth surface	20	0.67	_	0.04	0.29	0.13	0.03
Saw-tooth	49	0.035		0.22	0.74	0.23	0.049
surface	246	0.026	0.03	0.185	0.79	0.19	0.063

measurements at BINP VEPP-2M, 2001

sawtooth eliminates 70-80 % forward scattering, but introduces 20% diffuse scattering

effect of sawtooth on photon reflection (& energy distribution)

R. Cimino, V. Baglin, I.R. Collins, A. Giglia, N. Mahne, S. Nannarone, L. Pasquali, M. Pedio, "Photon Reflectivity Distributions from the LHC Beam Screen and their Implications on the Arc Beam Vacuum System", LHC Project Report 668, 2004

measurements at ELETTRA, 2003

	Flat sample	Saw-tooth sample
Forward scattering	80 %	4 %
Back scattering	0 %	2 %
Diffused	2 %	4 %
Total	82 %	10 %

only 4% diffuse scattering – why?

Table 1: Measured values of the forward scattering, back scattering and diffused light expressed in percentage of the incoming light.

angular distribution of emitted photoelectrons with sawtooth chamber, assumed in the simulation

wrongly-oriented sawtooth chamber

- no measurement available
- perhaps plausible to assume both ~20% diffusive scattering and 60-70% forward scattering
- to be conservative take cos² distribution with 100% reflection
- also take 3 times larger photoelectron yield (rough estimate from CERN EPA data)

how much does the heat load change?

compute heat load in dipole w and w/o sawtooth and then scale arc heat load starting from Humberto's result

global limit (assuming all arc magnets have wrong orientation)

for
$$\delta_{max}$$
=1.5: N_{max}~10¹¹ \rightarrow 9x10¹⁰
for δ_{max} =1.3: N_{max}~1.6x10¹¹ \rightarrow 1.2x10¹¹
for δ_{max} =1.1: N_{max}~1.8x10¹¹ \rightarrow 1.5x10¹¹

local limit (assuming all magnets in 1 half cell have wrong orientation)

for
$$\delta_{max}$$
=1.5: N_{max}~1.2x10¹¹ \rightarrow 1.0x10¹¹
for δ_{max} =1.3: N_{max} >2x10¹¹ \rightarrow 1.6x10¹¹
for δ_{max} =1.1: N_{max} >>2x10¹¹ \rightarrow 2.0x10¹¹

50-ns flat-bunch upgrade scenario (LPA)

local limit (assuming all magnets in 1 half cell have wrong orientation)

conclusions

- photon data are incomplete and inconsistent
- there is an impact on the local heat load, especially for the upgrade ; effect is 10-30% at most
- no more than one dipole per half cell (local cooling loop) should be installed with wrong beamscreen orientation if possible