Optics design studies for linac/ERL based LHeC

Anders Eide

outline:

introduction & 3 scenarios optics designs for 5 GeV injection designs with lower injection energy future work

luminosity vs energy

example parameters

	LHeC-RR	LHeC-RL	LHeC-RL	LHeC-RL	ILC	XFEL
		high lumi	100 GeV	high energy		
e ⁻ energy at IP [GeV]	60	60	100	140	(2×)250	20
luminosity $[10^{32} \text{ cm}^{-2} \text{s}^{-1}]$	29	29† (2.9 [‡])	2.2	1.5	200	N/A
bunch population $[10^{10}]$	5.6	0.19† (0.02 [‡])	0.3 (1.5)	0.2 (1.0)	2	0.6
e ⁻ bunch length [μ m]	$\sim 10,000$	300	300	300	300	24
bunch interval [ns]	50	50	50 (250)	50 (250)	369	200
norm. hor.&vert. emittance [μ m]	4000, 2500	50	50	50	10, 0.04	1.4
average current [mA]	135	7† (0.7‡)	0.5	0.5	0.04	0.03
rms IP beam size [μ m]	44, 27	7	7	7	0.64, 0.006	N/A
repetition rate [Hz]	CW	CW	10 [5% d.f.]	10 [5% d.f.]	5	10
bunches/pulse	N/A	N/A	71430	14286	2625	3250
pulse current [mA]	N/A	N/A	10	10	9	25
beam pulse length [ms]	N/A	N/A	5	5	1	0.65
cryo power [MW]	0.5	20	4	6	34	3.6
total wall plug power [MW]	100	100	100	100	230	19

Example LHeC-RR and RL parameters. Numbers for LHeC-RL high-luminosity option marked by `†' assume energy recovery with η_{ER} =90%; those with `‡' refer to η_{ER} =0%.ILC and XFEL numbers are included for comparison. Note that optimization of the RR luminosity for different LHC beam assumptions leads to similar luminosity values of about $10^{33} \text{cm}^{-2} \text{s}^{-1}$

tentative SC linac parameters for RL

LHC 7-TeV p beam parameters

	N _{b,p}	T _{sep}	$\epsilon_{p}\gamma_{p}$	$\beta^*_{p,min}$
LHC phase-I upgrade	1.7x10 ¹¹	25 ns	3.75 μm	0.25 m
LHC phase-II upgrade ("LPA")	5x10 ¹¹	50 ns	3.75 μm	0.10 m

LHeC-RL scenario	lumi	baseline	energy
final energy [GeV]	60	100	140
cell length [m]	24	24	24
cavity fill factor	0.7	0.7	0.7
tot. linac length [m]	3000	2712	3024
cav. gradient [MV/m]	13	25	32
operation mode	CW (ERL)	pulsed	pulsed

RF frequency: ~700 MHz

4 passes

2 passes

phase advance in linac

100 GeV

60 GeV ERL

Using the same lattice for several passes through the linac at different energies requires a conscious choice of phase advance and injection energy

- in the 100GeV recirculating linac an injection energy of 5GeV and a constant phase advance of 130° is chosen for the first pass
- in the ERL the phase advance is set to decrease linearly from 130° to 30°

Placet and MAD-X simulations

lower injection energy

encouraged by Georg Hoffstaetter

advantages:

 for 2-pass recirculating linac (100 or 140 GeV) slightly reduced linac length ~2%

• strong impact on ERL efficiency $\eta_{max} \sim (E_{coll} - E_{inj} - \Delta E_{SR}) / E_{coll}, L^{1}(1 - \eta_{max})$

disadvantage:

- large beta functions at transitions & linac ends
- loss of adiabaticity and significant beating

from 0.5 to 100 GeV

99% ERL scheme

next steps

- Tracking with MAD-X
 - Verify emittance growth from SR and compare with analytical estimate [10% growth for E_{final}=140 GeV]
 - Introduce cavities in MAD-X and observe effect on emittance
 - Observe chromatic effects, and, if needed and possible, implement chromatic correction with arc sextupoles and/or fine-tune the lattice [see next point]
- Improvement of lattice
 - Reduce β -peak in linac-to-arc transition regions
- Study wake-field effects in Placet
- Study Higher Order Mode heat loss
- Crosscheck power levels with Cornell & BNL