Polarity checks, arcs 23 & 87/76/65

R. Calaga, M. Giovannozzi, S. Redaelli, Y. Sun, <u>R. Tomás</u> and F. Zimmermann

Thanks to C. Alabau, S. Fartoukh and F. Schmidt

17 November, 2009

Procedure

Orbit = (BaseCorrQuad - BaseQuad) -(BaseCorr - Baseline)

Linear elements

- dp/p=0
- MAD enough but PTC with a₂, b₂ should help
- Model procedure:

Orbit = BaseCorrQuad - BaseCorr (denoted by MAD* for non-linear elements)

Non-linear elements

- dp/p≈-0.002
- **PTC** with a₂, b₂, a₃, b₃
- Model procedure: same as Exp.

(denoted by PTC)

Beam 1

- Q4.R2.B1 (corrector: acbxh3.r2)
- MQS.23.R2.B1 (corrector: acbch6.r2b1)
- SD1.A23B1 (corrector: acbcv5.r2b1)
- MSS.23.R2.B1(corrector: acbcv5.r2b1)
- KOF.A23.B1 (corrector: acbch6.r2b1)

Q4.R2.B1 (corrector: acbxh3.r2)

p.5/27

MQS.23.R2.B1 (corrector: acbch6.r2b1)

SD1.A23B1 (corrector: acbcv5.r2b1)

Rogelio Tomás García Polarity p.7/27 checks, 23 87/76/65 arcs &

MSS.23.R2.B1(corrector: acbcv5.r2b1)

Polarity checks, 23 p.8/27 87/76/65 arcs &

KOF.A23.B1 (corrector: acbch6.r2b1)

p.9/27

Beam 2

- QT5.L7.B2 (corrector: acbch6.r7b2)
- Q4.L6.B2 (corrector: acbch9.r6b2)
- QTL11.L7B2 (corrector: acbch9.l7b2)
- QT12.L7B2 (corrector: acbcv10.l7b2)
- QT13.L7B2 (corrector: acbh11.l7b2)
- MQS.A78B2 (corrector: acbxv3.l8)
- MQS.A56B2 (corrector: acbyh5.r6b2)
- KCS.A67.B2 (corrector: acbcv6.17b2)
- MSS.78B2 (corrector: acbcv5.18b2)
- MSS.56B2 (corrector: kcs.a67b2)

QT5.L7.B2 (corrector: acbch6.r7b2)

p.11/27

Q4.L6.B2 (corrector: acbch9.r6b2)

QTL11.L7B2 (corrector: acbch9.l7b2)

QT12.L7B2 (corrector: acbcv10.l7b2)

QT13.L7B2 (corrector: acbh11.l7b2)

MQS.A78B2 (corrector: acbxv3.l8)

p.16/27

MQS.A56B2 (corrector: acbyh5.r6b2)

KCS.A67.B2 (corrector: acbcv6.l7b2)

p.18/27

KCS.A67.B2 using MAD and right procedu

MSS.78B2 (corrector: acbcv5.l8b2)

p.20/27

MSS.56B2 (corrector: kcs.a67b2)

Summary

Applicable to all beam1 and beam2 elements tried so far:

- <u>Normal</u> quads, sexts and oct have <u>same</u> polarity convention as MAD
- <u>Skew</u> quads and sexts have opposite polarity
- Beyond the polarity checks these data serve to verify the magnetic model !!

Coupling from aperture measurements

C. Alabau, M. Giovannozzi, G. Mueller, S. Redaelli and R. Tomás

17 November, 2009

Coupling measurement

Thanks to the large horizontal orbit excursion during the aperture measurements we can measure the x-y coupling. We define it as:

Coupling = $\Delta Y(s) / \Delta X_{QF}$

Rather compatible with zero

Beam 2, arcs 87/76/65

Trend OK but coupling errors missing

Summary

- beam 2 arcs 8-5 show larger coupling than beam 1 arc 23, from measurement and from preliminary models (considering the dipoles a2).
- This verifies to some level the Wise a2 components

From the two presentations maybe we have verified b2, a2 and b3 !! (to some level)