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Principle of Action and Phase Jump (1)
Assume a particle is launched in a lattice with a
gradient error
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Principle (2)
There are two possibilities to describe the particle
trajectory:

x(s) =
√

2JβN (s) sin(ψN(s) − δ)

βN andφN are the new lattice functions generated by
the magnetic error.

Or,

x(s) =
√

2J0βD(s) sin(ψD(s) − δ0) for s < s1

x(s) =
√

2J1βD(s) sin(ψD(s) − δ1) for s > s1

βD andφD are the designed beta functions. Here, “con-

stants”J andδ change instead of lattice functions.– p.4/25



Principle (3)
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Action and Phase from BPM measurements (1)

Plots ofJ andδ can be build using adjacent BPM
measurements:

zi =
√

2Ji+1βzi sin(ψzi − δi+1)

zi+1 =
√

2Ji+1βzi+1 sin(ψzi+1 − δi+1)

Inverting these two Eq.,Ji+1 andδi+1 can be found.
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Action and Phase from BPM measurements (2)

Ji+1 =

(

zi/
√

βzi

)2

+
(

zi+1/
√

βzi+1

)2

2 sin2(ψzi+1 − ψzi)

−
zizi+1 cos(ψzi+1 − ψzi)

√

βziβzi+1 sin2(ψzi+1 − ψzi)

tan δi+1 =
(zi/

√

βzi) sinψzi+1 − (zi+1/
√

βzi+1) sinψzi

(zi/
√

βzi) cosψzi+1 − (zi+1/
√

βzi+1) cosψzi

This procedure is repeated until all the ring is covered.
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Error Strength
Not only the location of the error can be easily
determined but also the strength of the error:

∆x′ = θz =

√

2J0 + 2J1 − 4 ∗
√
J0J1 cos(δ1 − δ0)

βz(sθ)

θx = −
e∆Byl

p
,

θy =
e∆Bxl

p
.
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Multipole Components of Magnetic Errors
The magnetic error is a contribution from different
multipole components:

θx = B0 −B1x(sθ) + A1y(sθ) + 2A2x(sθ)y(sθ)

+B2[−x2(sθ) + y2(sθ)] + ...,

θy = A0 + A1x(sθ) +B1y(sθ) + 2B2x(sθ)y(sθ)

+A2[x
2(sθ) − y2(sθ)] + ...

whereBn andAn are values related with the normal
and skew multipole components of the error∆B.
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Estimating Errors (One Multipole)

A1 =
θxy(sθ) + θyx(sθ)

x2(sθ) + y2(sθ)

B1 =
θyy(sθ) − θxx(sθ)

x2(sθ) + y2(sθ)

If only one error multipole component is present, only

one particle trajectory is needed.
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Estimating Errors (Several Multipoles)
Several error multipole components -> several orbits
with different amplitudes
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Estimating Errors (Several Multipoles)

θx = C1xx(sθ) + C2xx
2(sθ) + cte

θy = C1yx(sθ) + C2yx
2(sθ) + cte

y(sθ) = mx(sθ) + b

A1 =
C1xm+ C1y

1 +m2

B1 = −
C1x − C1ym

1 +m2

A2 = −
−C2y − 2C2xm+ C2ym

2

1 + 2m2 +m4

B2 = −
C2x − 2C2ym− C2xm

2

1 + 2m2 +m4
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Results of Simulations

Simulations of particle trajectories with a gradient
error, a skew quadrupole error, and a sextupole error
were done. The difference between set errors and and
errors estimated from action and phase analysis were:

• 0.03% or less for gradient errors.

• 0.01% or less for skew quadrupole errors.

• 3% or less for sextupole errors.
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Linear Experiments with Beam in RHIC
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Experimental Conditions Required

• Large betatron oscillations usually excited by
dipole correctors.

• The trajectory should have a maximum at the
place where the error is being estimated.

• Systematic errors and dipole errors are eliminated
using difference orbits.

• Difference orbits are now made with two turns of
the same multiturn orbit.
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Action and Phase Analysis on a Difference Orbit
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Experiments with Known Gradient Errors (1)

• Large beam orbits were excited changing a
quadrupole corrector bi8-qs3 at IR8.

• Action and phase analysis of first turn orbits for
each setting of bi8-qs3 were done.

• Difference orbits were built using two different
methods.
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Experiments with Known Gradient Errors (1)
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Skew Quad Error Measurements (1)

• Skew quad errors (A1) were measured for all
RHIC IRs using the action and phase analysis.

• Roll angles of the quads were also measured
during the 2002 RHIC shutdown period.

•

Aeq
1 =

∑

3

i=1
(−2φi

fi

)
√

βi
xβ

i
y

√

βsc
x β

sc
y
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Skew Quad Error Measurements (2)
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Local skew quadrupole correctors were set according

to these values. – p.20/25



Nonlinear Experiments with Beam in the SPS (1)
Sextupoles were intentionally turn on at specific
locations
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Nonlinear Experiments with Beam in the SPS (2)
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Action and Phase Analysis for the LHC

• Simulation of LHC orbits with linear and
nonlinear errors.

• Action and phase analysis of simulated orbits.

• Estimation of magnetic errors from the simulated
orbits.

• Action and phase analysis of experimental orbits.

• Comparisons with other methods ?.
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Sample of LHC simulations so far
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