Action and Phase jump Analysis: From RHIC to the LHC

Javier Cardona

December 2009

Contents

- Principle of action and phase jump analysis
- Action and Phase from BPM measurements
- Determination of multipole components of a magnetc error.
- Simulation Results
- Experiments
- Orbits with known quadrupole errors
- Estimation of skew quadrupole errors at RHIC IRs
- Nonlinear Experiments with beam in the SPS
- Plans for the LHC

Principle of Action and Phase Jump (1)

 Assume a particle is launched in a lattice with a gradient error

Principle (2)

There are two possibilities to describe the particle trajectory:

$$
x(s)=\sqrt{2 J \beta_{N}(s)} \sin \left(\psi_{N}(s)-\delta\right)
$$

β_{N} and ϕ_{N} are the new lattice functions generated by the magnetic error.

Or,

$$
\begin{aligned}
& x(s)=\sqrt{2 J_{0} \beta_{D}(s)} \sin \left(\psi_{D}(s)-\delta_{0}\right) \text { for } s<s_{1} \\
& x(s)=\sqrt{2 J_{1} \beta_{D}(s)} \sin \left(\psi_{D}(s)-\delta_{1}\right) \text { for } s>s_{1}
\end{aligned}
$$

β_{D} and ϕ_{D} are the designed beta functions. Here, "constants" J and δ change instead of lattice functions.

Principle (3)

Action and Phase from BPM measurements (1)

Plots of J and δ can be build using adjacent BPM measurements:

$$
\begin{aligned}
z_{i} & =\sqrt{2 J_{i+1} \beta_{z i}} \sin \left(\psi_{z i}-\delta_{i+1}\right) \\
z_{i+1} & =\sqrt{2 J_{i+1} \beta_{z i+1}} \sin \left(\psi_{z i+1}-\delta_{i+1}\right)
\end{aligned}
$$

Inverting these two Eq., J_{i+1} and δ_{i+1} can be found.

Action and Phase from BPM measurements (2)

$$
\begin{aligned}
J_{i+1}= & \frac{\left(z_{i} / \sqrt{\beta_{z i}}\right)^{2}+\left(z_{i+1} / \sqrt{\beta_{z i+1}}\right)^{2}}{2 \sin ^{2}\left(\psi_{z i+1}-\psi_{z i}\right)} \\
& -\frac{z_{i} z_{i+1} \cos \left(\psi_{z i+1}-\psi_{z i}\right)}{\sqrt{\beta_{z i} \beta_{z i+1}} \sin ^{2}\left(\psi_{z i+1}-\psi_{z i}\right)}
\end{aligned}
$$

$\tan \delta_{i+1}=\frac{\left(z_{i} / \sqrt{\beta_{z i}}\right) \sin \psi_{z i+1}-\left(z_{i+1} / \sqrt{\beta_{z i+1}}\right) \sin \psi_{z i}}{\left(z_{i} / \sqrt{\beta_{z i}}\right) \cos \psi_{z_{i+1}}-\left(z_{i+1} / \sqrt{\beta_{z i+1}}\right) \cos \psi_{z i}}$
This procedure is repeated until all the ring is covered.

Error Strength

Not only the location of the error can be easily determined but also the strength of the error:

$$
\begin{gathered}
\Delta x^{\prime}=\theta_{z}=\sqrt{\frac{2 J_{0}+2 J_{1}-4 * \sqrt{J_{0} J_{1}} \cos \left(\delta_{1}-\delta_{0}\right)}{\beta_{z}\left(s_{\theta}\right)}} \\
\theta_{x}=-\frac{e \Delta B_{y} l}{p} \\
\theta_{y}=\frac{e \Delta B_{x} l}{p}
\end{gathered}
$$

Multipole Components of Magnetic Errors

The magnetic error is a contribution from different multipole components:

$$
\begin{aligned}
\theta_{x}= & B_{0}-B_{1} x\left(s_{\theta}\right)+A_{1} y\left(s_{\theta}\right)+2 A_{2} x\left(s_{\theta}\right) y\left(s_{\theta}\right) \\
& +B_{2}\left[-x^{2}\left(s_{\theta}\right)+y^{2}\left(s_{\theta}\right)\right]+\ldots, \\
\theta_{y}= & A_{0}+A_{1} x\left(s_{\theta}\right)+B_{1} y\left(s_{\theta}\right)+2 B_{2} x\left(s_{\theta}\right) y\left(s_{\theta}\right) \\
& +A_{2}\left[x^{2}\left(s_{\theta}\right)-y^{2}\left(s_{\theta}\right)\right]+\ldots
\end{aligned}
$$

where B_{n} and A_{n} are values related with the normal and skew multipole components of the error ΔB.

Estimating Errors (One Multipole)

$$
\begin{aligned}
A_{1} & =\frac{\theta_{x} y\left(s_{\theta}\right)+\theta_{y} x\left(s_{\theta}\right)}{x^{2}\left(s_{\theta}\right)+y^{2}\left(s_{\theta}\right)} \\
B_{1} & =\frac{\theta_{y} y\left(s_{\theta}\right)-\theta_{x} x\left(s_{\theta}\right)}{x^{2}\left(s_{\theta}\right)+y^{2}\left(s_{\theta}\right)}
\end{aligned}
$$

If only one error multipole component is present, only one particle trajectory is needed.

Estimating Errors (Several Multipoles)

Several error multipole components -> several orbits with different amplitudes

Estimating Errors (Several Multipoles)

$$
\begin{aligned}
\theta_{x} & =C_{1 x} x\left(s_{\theta}\right)+C_{2 x} x^{2}\left(s_{\theta}\right)+c t e \\
\theta_{y} & =C_{1 y} x\left(s_{\theta}\right)+C_{2 y} x^{2}\left(s_{\theta}\right)+c t e \\
y\left(s_{\theta}\right) & =m x\left(s_{\theta}\right)+b \\
A_{1} & =\frac{C_{1 x} m+C_{1 y}}{1+m^{2}} \\
B_{1} & =-\frac{C_{1 x}-C_{1 y} m}{1+m^{2}} \\
A_{2} & =-\frac{-C_{2 y}-2 C_{2 x} m+C_{2 y} m^{2}}{1+2 m^{2}+m^{4}} \\
B_{2} & =-\frac{C_{2 x}-2 C_{2 y} m-C_{2 x} m^{2}}{1+2 m^{2}+m^{4}}
\end{aligned}
$$

Results of Simulations

Simulations of particle trajectories with a gradient error, a skew quadrupole error, and a sextupole error were done. The difference between set errors and and errors estimated from action and phase analysis were:

- 0.03% or less for gradient errors.
- 0.01% or less for skew quadrupole errors.
- 3% or less for sextupole errors.

Linear Experiments with Beam in RHIC

Experimental Conditions Required

- Large betatron oscillations usually excited by dipole correctors.
- The trajectory should have a maximum at the place where the error is being estimated.
- Systematic errors and dipole errors are eliminated using difference orbits.
- Difference orbits are now made with two turns of the same multiturn orbit.

Action and Phase Analysis on a Difference Orbit

Experiments with Known Gradient Errors (1)

- Large beam orbits were excited changing a quadrupole corrector bi8-qs3 at IR8.
- Action and phase analysis of first turn orbits for each setting of bi8-qs3 were done.
- Difference orbits were built using two different methods.

Experiments with Known Gradient Errors (1)

Skew Quad Error Measurements (1)

- Skew quad errors $\left(A_{1}\right)$ were measured for all RHIC IRs using the action and phase analysis.
- Roll angles of the quads were also measured during the 2002 RHIC shutdown period.

$$
A_{1}^{e q}=\frac{\sum_{i=1}^{3}\left(-2 \frac{\phi_{i}}{f_{i}}\right) \sqrt{\beta_{x}^{i} \beta_{y}^{i}}}{\sqrt{\beta_{x}^{s c} \beta_{y}^{s c}}}
$$

Skew Quad Error Measurements (2)

Local skew quadrupole correctors were set according to these values.

Nonlinear Experiments with Beam in the SPS (1)

Sextupoles were intentionally turn on at specific locations

Nonlinear Experiments with Beam in the SPS (2)

$K 2 L=(0.438 \pm 0.032) m^{-2}$ from the fit of the experimental points which is in good agreement with the set value.

Action and Phase Analysis for the LHC

- Simulation of LHC orbits with linear and nonlinear errors.
- Action and phase analysis of simulated orbits.
- Estimation of magnetic errors from the simulated orbits.
- Action and phase analysis of experimental orbits.
- Comparisons with other methods ?.

Sample of LHC simulations so far

LHC orbit with 2 dipole kicks

References

[1] J. Cardona, S. Peggs, "Linear and Nonlinear Magnetic Error Measurements using Action and Phase Jump Analysis", PRST 12, 014002 (2009).
[2] J. Cardona, "Local Magnetic Error Estimation using Action and Phase Jump Analysis of Orbit Data", PAC'07, Albuquerque, New Mexico (2007).
[3] J. Cardona, R. T. Garcia, "Non Linear Error Analysis from Orbit Measurements in SPS and RHIC", PAC'05, Knoxville, Tennesse (2005).
[4] J. Cardona, S. Peggs, F. Pilat, V. Ptitsyn, " Measuring Local Gradient and Skew Quadrupole Errors in RHIC IRs" ,EPAC'04, Lucerne, Switzerland (2004).
[5] J. Cardona, "Linear and Non Linear Studies at RHIC Interaction Regions and Optical Design of the Rapid Medical Synchrotron", Ph.D. thesis, Stony Brook University, (2003).

