LHC optics studies with MAD-X, PTC, and beam measurements

C.Octavio Domínguez, Rogelio Tomás, Frank Zimmermann

Thanks to:
M.Carmen Alabau

Structure

1) Chromatic beta-beating studies with MAD-X and PTC
2) Dispersion measurements
3) BPM failure detection

Structure

1) Chromatic beta-beating studies with MAD-X and PTC
2) Dispersion measurements
3) BPM failure detection

Chromatic beta-beating studies with MAD-X and PTC - Definitions

Beta-beating:

$\frac{\Delta \beta}{\beta}=\frac{\beta_{\text {measured }}-\beta_{\text {model }}}{\beta_{\text {model }}}$

- No measurements \rightarrow We played with two parameters: δ p and seed (errors)

1) As function of δp :

$$
\frac{\Delta \beta}{\beta}=\frac{\beta_{\text {seed }}(\delta p)-\beta_{\text {seed }}(0)}{\beta_{\text {seed }}(0)}
$$

2) As function of the seed:

$$
\frac{\Delta \beta}{\beta}=\frac{\beta_{\text {seed }}(\delta p)-\beta_{0}(\delta p)}{\beta_{0}(\delta p)}
$$

$$
\delta p=\frac{\Delta p}{p}
$$

3) As function of both:

$$
\frac{\Delta \beta}{\beta}=\frac{\beta_{\text {seed }}(\delta p)-\beta_{0}(0)}{\beta_{0}(0)}
$$

Chromatic beta-beating studies with MAD-X and PTC

Chromatic beta-beating studies with MAD-X and PTC - No error

- Comparison between MAD-X and PTC without errors:

Masina of x betabeating for MAD- X and PTC

Chromatic beta-beating studies with MAD-X and PTC - No error

- Comparison between MAD-X and PTC without errors:

Minima of x betabeating for MAD- K and PTC

- In PTC we considered errors till $11^{\text {th }}$ order:

$$
\begin{aligned}
& \text { ON_B1S }=0 ; \text { ON_A1S }=0 \text {; } \\
& \text { ON_B2S = 1; ON_A2S = 1; } \\
& \text { ON_B3S = 1; ON_A3S = 1; } \\
& \text { ON_B4S = 1; ON_A4S = 1; } \\
& \text { ON_B5S = 1; ON_A5S = 1; } \\
& \text { ON_B6S = 1; ON_A6S = 1; } \\
& \text { ON_B7S = 1; ON_A7S = 1; } \\
& \text { ON_B8S = 1; ON_A8S = 1; } \\
& \text { ON_B9S = 1; ON_A9S = 1; } \\
& \text { ON_B10S = 1; ON_A10S = 1; } \\
& \text { ON_B11S = 1; ON_A11S = 1; }
\end{aligned}
$$

- We took 15 seeds from "WISE" and their respective correction files:
readtable, file="wise/injection_errors-emfqcs-1(to 15).tfs" ;
Call, file="/afs/cern.ch/eng/sl/online/om/repository/malabaup/correc tion_harmonics/BEAM1/MB_corr_setting_01-11_S1(to 15).mad";
- In MAD-X we considered only random quadrupolar errors : ON_B2S = 1, taken over 10 seeds

Chromatic beta-beating studies with MAD-X and PTC - Errors

- Comparison between MAD-X and PTC considering errors:

comparison betueen naxina in MAD- X and PTC with errors

Chromatic beta-beating studies with MAD-X and PTC - Errors

- Comparison between MAD-X and PTC considering errors:

Chromatic beta-beating studies with PTC - Considering errors

- Results considering 15 seeds:

aximun of nasina and average of s betabeating values for different dp and different randon

mun/naxina, nininun/ninina and averages of x betabeating values for different dp and differe

Chromatic beta-beating studies with PTC - Tune (without errors)

Chromatic beta-beating studies with PTC - Tune (with errors)

Chromatic beta-beating studies with PTC - Chromaticity (with errors)

Chromatic beta-beating studies with PTC - Considering errors

axinum of naxina and average of \mathbf{x} betabeating values for different $d p$ and different randon

Chromatic beta-beating studies with PTC - Considering errors

axinun of naxina and average of x betabeating values for different dp and different randon

- In the ideal model MAD-X and PTC give very similar results, as expected for the δ p range we were considering
- It exists already a much bigger difference when we include errors. That justifies the further use of PTC instead of MAD-X, since higher order errors seem to be important
- For δp values bigger than 4.10^{-3} the tune vary abruptly and the chromatic coupling can lead to non-monotonic variation of the beta-beating (in addition it is essential to include an initial correction (match in PTC) setting the chromaticity to 2 units)
- We obtained the behavior of the beta-beating as a function of two parameters: $\delta \mathrm{p}$ and seed

Structure

1) Chromatic beta-beating studies with MAD-X and PTC
2) Dispersion measurements
3) BPM failure detection

- D(s) $\delta \rightarrow$ Off-momentum closed orbit

$$
D(s)=\frac{d x_{c o}}{d(\delta p)}=-\eta f_{0} \frac{d x_{c o}}{d f_{0}}
$$

-We varied the RF frequency between -150 Hz and 150 Hz in steps of 50 Hz (134 measurements in total, taking around 20 orbits at each step)
-Performing a linear regression of the horizontal and vertical position data vs. δ p we obtain the measured dispersion for all BPMs, including error estimate

Dispersion measurements (Beam 1) - 450 GeV

Horizontal dispersion neasurenents and nodel for bean 1

Dispersion measurements (Beam 1) - 450 GeV

Vertical dispersion neasurenents and nodel for bean 1

Dispersion measurements (Beam 2) - 450 GeV

Horizontal dispersion neasurenents and nodel for bean 2

Dispersion measurements (Beam 1) - 1.18 TeV

Dispersion measurements (Beam 1) - 1.18 TeV

Dispersion neasurenents and data for bean 1 at 1.18 TeV

- We developed a script for a quick calculation of D and D^{\prime} at each BPM from the YASP row data, for later combination with beta beating analysis

450 GeV , after pre-cycling:

- D_{x} shows $\sim 10 \%$ beating, especially in S3-4 and S4-5; it is quite similar for both beams, but a bit smaller for beam 2
- D_{y} is small in both planes, slightly bigger for beam 2

1.18 TeV:

- D_{y} for both energies looks almost the same
- D_{x} shows still beating in S3-4 \& S4-5, but about half as large, and it's slightly larger in S2-3 \& S7-8

Structure

1) Chromatic betabbeating studies with MAD-X and PTC
2)Dispersion measurements
2) BPM failure detection
3) We calculate in our model the phase advance difference for consecutive BPMs for 100 seeds and subtracts from this value the value for the ideal case without error for each BPM:

$\Delta(\Delta \phi)=\Delta \phi_{\text {we }}-\Delta \phi_{\text {ne }}$

2) We calculate the rms, maximum and the minimum values for each BPM
3) We calculate the percentage of beta-beating of our measurement by computing:
 (rms taken over all BPMs)
4) We multiply this value times the maxima and minima from model calculated before, and these values will form our "envelope"
5) We represent the measurements together with the created "envelope"

BPM failure detection - Beam 2, Horizontal plane

Escaled naxina and ninima and aquired data for x phase advance betreen consecutive BPHs va

BPM failure detection - Beam 2, Horizontal plane

BPM failure detection - Problematic BPM couples

Horizontal plane:

"BPMYB.5R8.B2" "BPMR.6R8.B2" "BPMSY.4L1.B2" "BPMS.2L1.B2" "BPMS.2L1.B2" "BPMSW.1L1.B2" "BPMSW.1R1.B2" "BPMS.2R1.B2" "BPM.24R1.B2" "BPM.25R1.B2" "BPM.25R1.B2" "BPM.26R1.B2" "BPMSW.1R2.B2" "BPMS.2R2.B2" "BPMS.2R2.B2" "BPMSX.4R2.B2" "BPMW.4L3.B2" "BPMW.4R3.B2" "BPMW.4R3.B2" "BPMWE.4R3.B2" "BPM.9L5.B2" "BPM.8L5.B2" "BPM.8L5.B2" "BPM.7L5.B2" "BPMWB.4L5.B2" "BPMWT.B4L5.B2" "BPMWT.B4L5.B2" "BPMWT.A4L5.B2" "BPMS.2L5.B2" "BPMSW.1L5.B2" "BPMSW.1R8.B2" "BPMS.2R8.B2" "BPMYB.4R8.B2" "BPMYB.5R8.B2" "BPMS.2R1.B2" "BPMSY.4R1.B2" "BPMS.2L2.B2" "BPMSW.1L2.B2" "BPMYB.4R2.B2" "BPM.5R2.B2" "BPMSY.4L5.B2" "BPMS.2L5.B2"

Vertical plane:

"BPMYB.5R8.B2" "BPMR.6R8.B2" "BPMWB.4L1.B2" "BPMSY.4L1.B2 "BPMSY.4L1.B2" "BPMS.2L1.B2" "BPMS.2L1.B2" "BPMSW.1L1.B2" "BPMS.2R1.B2" "BPMSY.4R1.B2" "BPM.26R1.B2" "BPM.27R1.B2" "BPM.27R1.B2" "BPM.28R1.B2" "BPM.28R1.B2" "BPM.29R1.B2" "BPM.32R1.B2" "BPM.33R1.B2" "BPM.32L2.B2" "BPM.31L2.B2" "BPMSW.1R2.B2" "BPMS.2R2.B2" "BPMR.6R2.B2" "BPM_A.7R2.B2" "BPMWE.4L3.B2" "BPMW.4L3.B2" "BPMWB.4L5.B2" "BPMWT.B4L5.B2" "BPMWT.B4L5.B2" "BPMWT.A4L5.B2"
"BPMS.2L5.B2" "BPMSW.1L5.B2" "BPMSW.1R5.B2" "BPMS.2R5.B2" "BPMS.2R5.B2" "BPMSY.4R5.B2" "BPM.8L6.B2" "BPMYB.5L6.B2" "BPMYB.5L6.B2" "BPMYA.4L6.B2" "BPM.8L8.B2" "BPM.7L8.B2" "BPM.7L8.B2" "BPM.6L8.B2" "BPMS.2L8.B2" "BPMSW.1L8.B2" "BPMSW.1R8.B2" "BPMS.2R8.B2" "BPMS.2R8.B2" "BPMSX.4R8.B2" "BPMYB.4R8.B2" "BPMYB.5R8.B2" "BPMSY.4L5.B2" "BPMS.2L5.B2" "BPMSX.4L8.B2" "BPMS.2L8.B2"
-We observe BPMs out of envelope:

1) Values near 0.5 : The polarity of a BPM can be wrong
2) Values near 1-Q or $0+\mathrm{Q}$: Possibly there is a synchronization problem

- The operation team has already detected some of these failure BPMs confirming our study
- Some bad BPMs from our dispersion measurement are in the above list
- Further studies are necessary to know what happens for BPMs with values far from 0.5, 1-Q and 0+Q
- These studies can be very helpful for the operation team as well as for optics measurements
- The same procedure has to be done with beam 1

