News on the LHC online model and data analysis

C. Alabau Pons, M. Giovannozzi, G. Mueller, S. Redaelli, F. Schmidt, R. Tomás

LCU meeting (26-01-2010)

Creation of coupling correction knobs for the LHC:

The aim is to reduce the module of the C⁻ coupling vector, which can be measured:

Skew quadrupole families available:

(kqs.r7b1	(kqs.r2b2
	kqs.r5b1	r5b1 r3b1 r1b1 8b1 6b1 4b1 Beam 2 2b1	kqs.r4b2
	kqs.r3b1		kqs.r6b2
	kqs.r1b1		kqs.r8b2
	kqs.l8b1		kqs.l1b2
Ream 1	kqs.l6b1		kqs.l3b2
	kqs.l4b1		kqs.l5b2
	kqs.l2b1		kqs.l7b2
	kqs.a81b1		kqs.a12b2
	kqs.a67b1		kqs.a78b2
	kqs.a45b1		kqs.a56b2
(kqs.a23b1		kqs.a34b2

kqf

- Coupling knobs redone for both beams from IP1 (as demanded by the operators)

Skew quadrupoles varied to get certain coupling coefficients, knobs normalized to the minimum tune difference

BEAM 1

```
For C<sup>-</sup><sub>real</sub>:

kqs.r7b1 = 0.002918050948
kqs.r5b1 = -0.003890653974
kqs.r1b1 = -0.001607496029
kqs.l8b1 = 0.002918050948
kqs.l6b1 = -0.003890653974
kqs.l2b1 = -0.001607496029
kqs.a81b1 = -0.0429437779
kqs.a67b1 = 0.002257439027
kqs.a45b1 = 0.0528938668
kqs.a23b1 = 0.01336480383
```

For C⁻imag :

```
kqs.r7b1 = -0.007636090556
kqs.r5b1 = 0.03791092411
kqs.r1b1 = 0.009180748553
kqs.l8b1 = -0.007636090556
kqs.l6b1 = 0.03791092411
kqs.l2b1 = 0.009180748553
kqs.a81b1 = -0.02920127391
kqs.a67b1 = -0.0008972271658
kqs.a45b1 = -0.01492350985
kqs.a23b1 = -0.03321119582
```

- Coupling knobs redone for both beams from IP1 (as demanded by the operators)

Skew quadrupoles varied to get certain coupling coefficients, knobs normalized to the minimum tune difference

BEAM 2

For C⁻real:

kqs.r2b2 = -0.07861208699kqs.r4b2 = -0.006467324901kqs.r6b2 = -0.03300626877kqs.r8b2 = -0.02694461894kqs.l1b2 = -0.02694461894kqs.l3b2 = -0.07861208699kqs.l5b2 = -0.006467324901kqs.l7b2 = -0.03300626877kqs.a12b2 = -0.06005456312kqs.a78b2 = 0.10107831kqs.a56b2 = 0.0668479318

For C⁻imag :

(kqs.r2b2 = 0.04975907469
	kqs.r4b2 = -0.04731414785
	kqs.r6b2 = 0.01944707069
	kqs.r8b2 = -0.02165357863
	kqs.l1b2 = -0.02165357863
	kqs.l3b2 = 0.04975907469
	kqs.l5b2 = -0.04731414785
	kqs.l7b2 = 0.01944707069
	kqs.a12b2 = 0.07478613211
	kqs.a78b2 = -0.1718734802
	kqs.a56b2 = -0.09219969124
•	

- Coupling knobs created to compensate the ATLAS, ALICE and CMS solenoids at injection (give similar results to the ones given by T.Risselada).

ATLAS

BEAM 1

$\left(\right)$	kqs.r7b1	6.989447984e-06
	kqs.r5b1	-3.478188872e-05
	kqs.r1b1	4.326773078e-05
	kqs.l8b1	6.989447984e-06
)	kqs.l6b1	-3.478188872e-05
١	kqs.l2b1	4.326773078e-05
	kqs.a81b1	-1.613935965e-05
	kqs.a67b1	-5.691612883e-07
	kqs.a45b1	1.195221579e-05
	kqs.a23b1	-1.242429505e-06
\sim		

BEAM 2

-	kqs.r2b2	2.269909172e-05
	kqs.r4b2	4.717120537e-05
	kqs.r6b2	-5.314021553e-05
	kqs.r8b2	2.631383375e-05
	kqs.l1b2	2.631383375e-05
	kqs.l3b2	2.269909172e-05
	kqs.l5b2	4.717120537e-05
	kqs.l7b2	-5.314021553e-05
	kqs.a12b2	-1.131136769e-05
	kqs.a78b2	3.151494529e-06
	kqs.a56b2	-3.821752443e-05

Coupling knobs from secondary lines

Ongoing work: coupling knobs computed from the secondary lines of the tunes

- Introduce coupling corresponding to certain C⁻(Re)/C⁻(Im) coefficients
- Particles kicked in the horizontal plane at certain BPM location
- Tracking performed with MADX
- Data analysed with SUSSIX

Amplitude of the secondary y line with respect to the x tune amplitude versus x offset

Effect of the alignment errors on the beta-beat BEAM 1 (simulation with nominal optics)

Effect of the alignment errors on the beta-beat BEAM 2 (simulation with nominal optics)

Beam 2 – Horizontal aperture scan

- The bump amplitude was limited to 7 or 8 $\sigma.$

Bump amplitude limited to:

Main losses at:

		Horizo	ntal	Beam with tl	envelope added (3 σ) computed be measured optics and		
N+8 / -7 sigmaεMQY.5R6MQY.4L6NQY.5R6MQ.11R6MQM.6L8				to zero			
- closed orbit set to zero n1 computed with: - nominal aperture, tolerances - meas optics and 3.5 mm closed orbit							
		Meas apert. (m)	n1 n1 meas nom	n1 meas opt		Meas apert. (m)	n1 n1 n1 meas nom meas opt
					MQY.4L6	0.027	9.8 - 9.4 - 8.5
MQY.	.5R6	0.021	6.39 - 9.3	7.1	MQY.5R6	-	-
MQ.1	1R6	0.020	10.1 - 10.9	9 - 7.9	MQM.6L8	0.020	9.9 -10.2 - 8.3
$IS_{x,meas} = 719 \text{ m}$							

 $13_{x,nom} = 587 \text{ m}$

Beam 2 – Horizontal aperture scan

Beam envelope added (3 σ) computed with the measured optics and

Next steps

- LHC aperture measurements
 - complete analysis, more automatic
 - off-momentum measurements

- Thick model: introduce multipole field errors from magnet measurements in the thick lattice