

IR2 squeeze for 3.5 TeV

John Jowett

With important contributions from Thys Risselada

J.M. Jowett, ABP-LCU meeting, 9 March 2010

IR2 squeeze background

- Injection optics in IR2 is highly constrained
 - Injection phase advance constraints
 - Aperture limitations (n₁ criterion)
 - Solution found requires high value of (normalised) gradient, in triplet quadrupoles, must be reduced for 7 TeV. Only IR2 optics in machine so far.
- For Pb-Pb operation at 7Z TeV, the squeeze to $\beta^*=0.5$ m requires a *pre-squeeze*, in which injection constraints are relaxed at constant $\beta^*=10$ m and triplet gradient is reduced.
 - Pre-squeeze takes additional time.
- Squeeze then proceeds at constant triplet K1.
- For 3.5 Z TeV, p p operation mostly at β*=10 m but a squeeze to β*=3 m is requested.
 - Pre-squeeze no longer necessary/wanted and could be suppressed to save time in operation.

Squeeze with pre-squeeze for 7 TeV

Beam 1

28 steps, some awkward variations of trim quads – very ugly.

Squeeze with pre-squeeze for 7 TeV

New squeeze for 3.5 TeV

- Previous presentations showed that it is extremely difficult to make a smooth transition from injection optics to later points in the existing squeeze
- Numerous approaches have been tried, eg, varying triplet and β* together from injection optics according to various schemes towards later points in squeeze.
 - Somewhere there is always a bad step with large beating, reflecting the fact that there is no smooth, possibly no continuous, path between injection and fully-squeezed optics.

– Also hard to avoid big peaks in β at Q6.

IR2 matching reminded me of earlier work...

And it also has to work for Beam 2 ...

New squeeze by T. Risselada (TRSqueeze)

- Abandon all previous squeeze optics except the injection one
- Allow b-functions to peak much more strongly in Q6
- Find special variation of triplet strength KQX.L2 with β*
 - Empirically, as far as I know
- Control variations of the trim quads between squeeze steps
 - Otherwise they vary a lot, which is OK for hardware, but does not help in finding smooth optical solutions
- Possibly other tricks ...

TRSqueeze, Beam 1

TRSqueeze, Beam 2

Analysis of TRSqueeze

- Squeeze settings defined at integer squeeze index points n
- For non-integer n (1/4 steps), linear interpolation of all strengths (essentially as in control system)
 - Evaluate tune-variation, chromaticity variation, beta and dispersion beating, aperture, etc.
- Collection of functions in Madtomma to automate this
- For beta-beating, always compare with an optics with other IRs squeezed to 2 or 2.5 m (most sensitive).

Variations in TRSqueeze

Tune and beta-beating in TRSqueeze, Beam 1

J.M. Jowett, ABP-LCU meeting, 9 March 2010

Tune and beta-beating in TRSqueeze, Beam 2

Beta-beating exceeds 1% level (RMS and peak)

J.M. Jowett, ABP-LCU meeting, 9 March 2010

Beta-beating at step 3/2

Construct another squeeze (TJSqueeze)

Look at empirical variation of triplet strength found by TR

Fit with 5th order polynomial, excluding steps 2,3 and beyond 9. Use this to find new optics for

 $\beta^* = 9.5, 9.0 \text{ m}$

Works for n = 3 but not n = 2.

Try small variations of *n* around 2 but

n = 2 found to be optimum for beating.

Insert another squeeze point at

n = 1.38, matching to $\beta^* = 9.82$ m

(numbers optimised in matching/beating loop).

TJSqueeze, Beam 1

TJSqueeze, Beam 2

Analysis of TJSqueeze

- Squeeze settings defined at integer squeeze index points n
- For non-integer n (1/4 steps), linear interpolation of all strengths (essentially as in control system)
 - Evaluate tune-variation, chromaticity variation, beta and dispersion beating, aperture, etc.
- For beta-beating, always compare with an optics with other IRs squeezed to 2 or 2.5 m (most sensitive).

Variations in TJSqueeze

Tune and beta-beating in TJSqueeze, Beam 1

J.M. Jowett, ABP-LCU meeting, 9 March 2010

Tune and beta-beating in TJSqueeze, Beam 2

J.M. Jowett, ABP-LCU meeting, 9 March 2010

Other variations

Aperture quantity n1 at worst point

Chromaticity variation after correction (1)

At each integer squeeze index, there will be a setting of the two sextupole families to correct this chromaticity to the desired value (+2, say). We know that this contribution is linear in the sextupoles strengths:

$$\begin{aligned} \mathbf{Q'_{x,y}} \left(\mathbf{K_{2\,SF}}, \ \mathbf{K_{2\,SD}} \right) &= \frac{\pm 1}{4 \pi} \int \mathbf{K_{2}} \left(\mathbf{s} \right) \ \mathbf{D_{x}} \left(\mathbf{s} \right) \ \beta_{\mathbf{x},\mathbf{y}} \left(\mathbf{s} \right) \ \mathrm{d}\mathbf{s} \\ &= \pm \left(\frac{\mathbf{K_{2\,SF}} \ \mathbf{L_{SF}} \ \mathbf{D_{xSF}}}{4 \pi} \sum_{\mathbf{SF}} \beta_{\mathbf{x},\mathbf{y}} + \frac{\mathbf{K_{2\,SD}} \ \mathbf{L_{3D}} \ \mathbf{D_{x3D}}}{4 \pi} \sum_{\mathbf{SD}} \beta_{\mathbf{x},\mathbf{y}} \right) \\ &= \mathbf{A_{x,y}} \ \mathbf{K_{2\,SF}} + \mathbf{B_{x,y}} \ \mathbf{K_{2\,SD}} \end{aligned}$$

We know that, to a very good approximation, $\sum_{SF} \beta_{x,y}$ and $\sum_{SD} \beta_{x,y}$ will reduce to a sum over pairs of adjacent sextupoles in one of which the β function will be larger and smaller by the same amount (the typical pattern for small beta-beating in the arcs). Therefore the coefficients $A_{x,y}$ and $B_{x,y}$ will be constant to a very good approximation throughout the squeeze. At each integer squeeze point, we can compensate the chromaticity to the value 2 in each plane by solving

 $\begin{array}{l} \label{eq:gpxnat} \mbox{(n)$} + \mbox{A}_{\textbf{x}} \ \mbox{K}_{2\,\text{SF}} \ \mbox{(n)$} + \mbox{B}_{\textbf{x}} \ \mbox{K}_{2\,\text{SD}} \ \mbox{(n)$} = 2 \\ \mbox{Qpynat} \ \mbox{(n)$} + \mbox{A}_{\textbf{y}} \ \mbox{K}_{2\,\text{SF}} \ \mbox{(n)$} + \mbox{B}_{\textbf{y}} \ \mbox{K}_{2\,\text{SD}} \ \mbox{(n)$} = 2 \\ \mbox{Qpynat} \ \mbox{(n)$} + \mbox{A}_{\textbf{y}} \ \mbox{K}_{2\,\text{SF}} \ \mbox{(n)$} + \mbox{B}_{\textbf{y}} \ \mbox{K}_{2\,\text{SD}} \ \mbox{(n)$} = 2 \\ \end{array}$

for the sextupole strengths.

At non-integer squeeze points, the control system will make a linear interpolation of the sextupole strengths between these values and the resulting chromaticity will be

Chromaticity variation after correction (2)

Beta-beating at step 3/2

Conclusion

- Finally found a new squeeze without the presqueeze for IR2
 - Had to abandon previous squeeze completely
- Beta-beating etc are acceptable
- Bumps mostly matched (E. Laface)
- Aperture (n1 value) also acceptable final checks with bumps to be made.
- This optics can be used for p-p, squeezed to 3 m and for Pb-Pb this year at 3.5 Z TeV (and up to ~6.5 TeV later).
- Going beyond 3 m should be possible with more steps.
- Start in ramp to avoid pre-squeeze at 7 TeV?