IR2 squeeze for 3.5 TeV

John Jowett

With important contributions from Thys Risselada

IR2 squeeze background

- Injection optics in IR2 is highly constrained
- Injection phase advance constraints
- Aperture limitations (n_{1} criterion)
- Solution found requires high value of (normalised) gradient, in triplet quadrupoles, must be reduced for 7 TeV. Only IR2 optics in machine so far.
■ For $\mathrm{Pb}-\mathrm{Pb}$ operation at $7 Z \mathrm{TeV}$, the squeeze to $\beta^{*}=0.5 \mathrm{~m}$ requires a pre-squeeze, in which injection constraints are relaxed at constant $\beta^{*}=10 \mathrm{~m}$ and triplet gradient is reduced.
- Pre-squeeze takes additional time.
- Squeeze then proceeds at constant triplet K1.

■ For $3.5 \mathrm{Z} \mathrm{TeV} ,\mathrm{p} \mathrm{p} \mathrm{operation} \mathrm{mostly} \mathrm{at} \beta^{*}=10 \mathrm{~m}$ but a squeeze to $\beta^{*}=3 \mathrm{~m}$ is requested.

- Pre-squeeze no longer necessary/wanted and could be suppressed to save time in operation.

Squeeze with pre-squeeze for 7 TeV

Beam 1
28 steps, some awkward variations of trim quads - very ugly.

Squeeze with pre-squeeze for 7 TeV

Beam 2

Also ugly.

1234567891011123141516781 थ10222324522728

New squeeze for 3.5 TeV

- Previous presentations showed that it is extremely difficult to make a smooth transition from injection optics to later points in the existing squeeze
■ Numerous approaches have been tried, eg, varying triplet and β^{*} together from injection optics according to various schemes towards later points in squeeze.
- Somewhere there is always a bad step with large beating, reflecting the fact that there is no smooth, possibly no continuous, path between injection and fully-squeezed optics.
- Also hard to avoid big peaks in β at Q6.

IR2 matching reminded me of earlier work...

And it also has to work for Beam 2 ...

New squeeze by T. Risselada (TRSqueeze)

■ Abandon all previous squeeze optics except the injection one

- Allow b-functions to peak much more strongly in Q6
■ Find special variation of triplet strength KQX.L2 with β^{*}
- Empirically, as far as I know

■ Control variations of the trim quads between squeeze steps

- Otherwise they vary a lot, which is OK for hardware, but does not help in finding smooth optical solutions
■ Possibly other tricks ...

TRSqueeze, Beam 1

TRSqueeze, Beam 2

1234567891011121314151617

Different from Beam 1

Analysis of TRSqueeze

■ Squeeze settings defined at integer squeeze index points n
■ For non-integer n (1/4 steps), linear interpolation of all strengths (essentially as in control system)

- Evaluate tune-variation, chromaticity variation, beta and dispersion beating, aperture, etc.
- Collection of functions in Madtomma to automate this
■ For beta-beating, always compare with an optics with other IRs squeezed to 2 or 2.5 m (most sensitive).

Variations in TRSqueeze

Tune and beta-beating in TRSqueeze, Beam 1

Beta-beating exceeds 1\% level (RMS and peak)

Tune and beta-beating in TRSqueeze, Beam 2

Beta-beating exceeds 1\% level (RMS and peak)
J.M. Jowett, ABP-LCU meeting, 9 March 2010

Beta-beating at step 3/2

Construct another squeeze (TJSqueeze)

- Look at empirical variation of triplet strength found by TR

Fit with 5th order polynomial, excluding steps 2,3 and beyond 9 . Use this to find new optics for $\beta^{*}=9.5,9.0 \mathrm{~m}$
Works for $n=3$ but not $n=2$.
Try small variations of n around 2 but $n=2$ found to be optimum for beating.
Insert another squeeze point at
$n=1.38$, matching to $\beta^{*}=9.82 \mathrm{~m}$
(numbers optimised in matching/beating loop).

TJSqueeze, Beam 1

TJSqueeze, Beam 2

Analysis of TJSqueeze

■ Squeeze settings defined at integer squeeze index points n
■ For non-integer n (1/4 steps), linear interpolation of all strengths (essentially as in control system)

- Evaluate tune-variation, chromaticity variation, beta and dispersion beating, aperture, etc.
■ For beta-beating, always compare with an optics with other IRs squeezed to 2 or 2.5 m (most sensitive).

Variations in TJSqueeze

Tune and beta-beating in TJSqueeze, Beam 1
 TJSqueszoptics[LHCB1,n]

TJSqueazeOptics[LHCB1,n]

LHCB1, BEFORE.IR2.B1, squeaze step, in

Beta-beating does not exceed 1\% level (RMS and peak) for $\mathrm{n}<16$

Tune and beta-beating in TJSqueeze, Beam 2

TJSqueazeOptics[LHCB1,n]

TJSquazeOptics[LHCB1,n]

Beta-beating does not exceed 1\% level (RMS and peak) for $\mathrm{n}<16$

Other variations

Aperture quantity n1 at worst point

Chromaticity variation after correction (1)

At each integer squeeze index, there will be a setting of the two sextupole families to correct this chromaticity to the desired value (+2 , say). We know that this contribution is linear in the sextupoles strengths:

```
\(Q^{\prime}{ }_{x, Y}\left(K_{2 s F}, K_{2 s D}\right)=\frac{ \pm 1}{4 \pi} \int K_{2}(s) D_{x}(s) \beta_{x, Y}(s) d s\)
    \(= \pm\left(\frac{K_{2 S F} L_{s F} D_{x S F}}{4 \pi} \sum_{S F} \beta_{x, Y}+\frac{K_{2 S D} L_{S D} D_{x S D}}{4 \pi} \sum_{3 D} \beta_{x, Y}\right)\)
    \(=A_{x, Y} K_{2 S F}+B_{x, Y} K_{2 S D}\)
```

We know that, to a very good approximation, $\Sigma_{s P} \beta_{x_{, Y}}$ and $\Sigma_{S D} \beta_{x, Y}$ will reduce to a sum over pairs of adjacent sextupoles in one of which the β function will be larger and smaller by the same amount (the typical pattern for small beta-beating in the arcs). Therefore the coefficients $A_{x, y}$ and $B_{x, y}$ will be constant to a very good approximation throughout the squeeze. At each integer squeeze point, we can compensate the chromaticity to the value 2 in each plane by solving

Qpxnat $(n)+\mathbb{A}_{x} K_{2 S F}(n)+B_{x} K_{2 S D}(n)=2$
Qpynat $(\mathrm{n})+\mathrm{A}_{\mathrm{Y}} \mathrm{K}_{2 \mathrm{SF}}(\mathrm{n})+\mathrm{B}_{\mathrm{Y}} \mathrm{K}_{2 \mathrm{SD}}(\mathrm{n})=2$
for the sextupole strengths.
At non-integer squeeze points, the control system will make a linear interpolation of the sextupole strengths between these values and the resulting chromaticity will be

Chromaticity variation after correction (2)

Beta-beating at step 3/2

Conclusion

■ Finally found a new squeeze without the presqueeze for IR2

- Had to abandon previous squeeze completely
- Beta-beating etc are acceptable

■ Bumps mostly matched (E. Laface)

- Aperture (n1 value) also acceptable - final checks with bumps to be made.
■ This optics can be used for p-p, squeezed to 3 m and for $\mathrm{Pb}-\mathrm{Pb}$ this year at $3.5 \mathrm{Z} \mathrm{TeV} \mathrm{(and} \mathrm{up} \mathrm{to}$ ~6.5 TeV later).
■ Going beyond 3 m should be possible with more steps.
■ Start in ramp to avoid pre-squeeze at 7 TeV ?

