MAD-X vs. LSA magnet polarities


Marek Strzelczyk

with contribution of: Mike Lamont Massimo Giovannozzi

1 November 2010

- Reference beam is beam 1 observer looks in direction of beam 1
- Field and gradients positive **if** current enters A terminal
- Left aperture from connection end is aperture 1 (V1)
- For single aperture magnets covering both beams:
 - □ beam 1 is used to describe the polarity.

- A positive horizontal kick on beam 1 deflects beam outwards.
 - $\hfill\square$ This implies a negative B field.
- A positive vertical kick on beam 1 deflects beam upwards.
 - □ This implies negative skew dipole field point outwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the B terminal for B1.

- A positive horizontal kick on beam 2 deflects beam outwards. This implies a positive B field.
- A positive vertical kick on beam 2 deflects beam upwards. This implies positive skew dipole - field point inwards
- The agreement is that a positive current from the power converter should give a positive kick. This mean connecting positive to the A terminal for B2

For correctors acting on both beams, B1 is the reference but we have to very careful in the software: a positive kick is negative for B2.

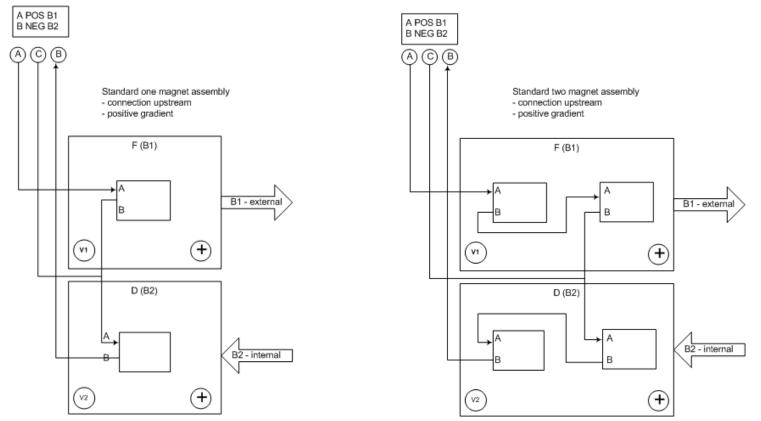
Beam	Kick [LSA]	Deflection	Field
B1	+θ H	OUT	V NEG
B1	+θ V	UP	NEG (OUT)*
B2	+θ H	OUT	V POS
B2	+θ V	UP	POS (IN)
B1/B2	+θ H	B1 OUT B2 IN	V NEG
B1/B2	+θ V	B1 UP B2 DOWN	NEG (OUT)*

- A positive quadrupole field gradient or polarity is one where the vertical B-field increases as one moves in a positive x direction (away from the centre of the machine). This is focusing for beam 1
- MAD: a positive value corresponds to horizontal focusing of a positively charged particle.

Beam 1

 \Box +K horizontally focusing \rightarrow positive A

Beam 2


 \square +K horizontally focusing \longrightarrow positive B

- kqd := -0.008600955656 ;
- kqf := 0.008990100753 ;
- kqf.a12 := kqf ;
- kqd.a12 := kqd ;
- RQF.A12B1 : MQ, K1 := KQF.A12;
- RQF.A12B2 : MQ, K1 := -KQF.A12;
- MQ.23R5.B1:RQF.A56B1
 MQ.23R5.B2:RQD.A56B2

- Except for bipolar supplies we give power converters positive references
- Rely on cabling to get things right

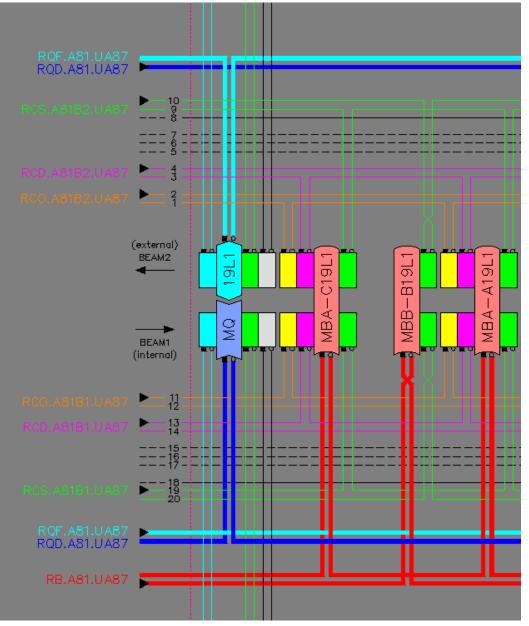
MAD-X vs. LSA magnet polarities

In LSA parlance:

- Magnet is an element
- □ Magnet string is a logical hardware
 - i.e stuff we can not directly address
 - A piece of logical hardware consists of one or more elements
- Power converters are actual hardware
 - i.e. stuff we can actually talk to, load functions etc.
 - not always a one to one mapping
- □ We get twiss outputs from optics for elements
 - Then we populate them as strengths of logical hardware
 - In case one logical hardware contains elements covering B1 and B2 we take the sign of B1 elements' twiss (see: Conventions)
- □ We map calibration curves (B versus I) to logical hardware
 - i.e. we calculate currents for magnets strings and worry about the power converters later

- In LSA we keep strengths (K) and current (I) for magnet strings (logical hardware).
 NB We keep the strength sign: + is F, is D for both beams
- The magnet strings are mapped on to power converters for which we calculate currents (IREF).
- To take care of the cases where negative strengths have to give positive reference we have a "calibration sign" for each logical hardware in the database which is set to give the correct current when we go through the calibration.

For non-bipolar quads we only keep the positive signed calibration.


1 November 2010

LOGICAL_HARDWARE_NAME	B NB_OF_ELEMENTS B ACTIVE_CAL_NAME	2 CAL_SIGN 2 MAGNET_TYPE
1 RQTF.A23B1	8 MQT_F	1 MQT
2 RQSX3.L2	1 MQSX_F	1 MQSX
3 RQTD.A78B1	8 MQT_F	-1 MQT
4 RQTD.A81B1	8 MQT_F	-1 MQT
5 RQS.R2B2	2 MQS_F	1 MQS
6 RQTF.A23B2	8 MQT_F	1 MQT
7 RQTF.A34B2	8 MQT_F	1 MQT
8 RQTD.A67B1	8 MQT_F	-1 MQT
9 RQS.R5B1	2 MQS_F	1 MQS
10 RQTF.A78B1	8 MQT_F	1 MQT
11 RQS.R7B1	2 MQS_F	1 MQS
12 RQTD.A67B2	8 MQT_F	-1 MQT
13 RQS.A78B2	4 MQS_F	1 MQS
14 RQS.L2B1	2 MQS_F	1 MQS
15 RQTD.A12B1	8 MQT_F	-1 MQT
16 RQ\$X3.R2	1 MQSX_F	1 MQSX
17 RQSX3.R8	1 MQSX_F	1 MQSX

And then hope the cabling is right

1 November 2010

MAD-X vs. LSA magnet polarities

Pretty natural

Standard signs for strengths e.g. positive sextupole compensates negative b3

Keep both positive and negative branches of the calibration curve

□ so in general positive strength will demand positive current...

	#	CALIBRATION_NAME	B_FIELD	I	SLOPE
	1	MCS	-3646.429694	-600	0
►	2	MCS	3646.429694	600	0

The polarity flag is defined (proposal by S. Fartoukh) as:

Sign [K_{twiss} * bv * polarity_flag] = Sign [current in LHC]

- K_{twiss} stands for the element strength as reported in a Twiss output.
- It can be computed from:
 - $\hfill\square$ The way the circuit under consideration is cabled
 - □ The magnet orientation
 - □ The machine convention for the sign of magnetic field gradient
 - The change of coordinate system between machine and MAD-X (x-axis positive pointing towards the outside of the machine) should be taken into account.

More formally:

- □ Normal element:
 - polarity_flag = Sign[$I * d^n B_y/d x^n$]
 - The opposite should be taken for elements represented as Hkickers in the MAD-X sequence
- Skew element:
 - polarity_flag = Sign[I * dⁿ B_x/d xⁿ]
- For details refer to Massimo's talk at LHC Beam Commissioning from 19/05/2009

MAD-X polarity flag is claimed to be fully implemented and debugged since 2009

Method

- □ Take standard LHC sequence
- □ Take standard LHC optic (e.g. Injection optic)
- □ Assign non-zero strengths for multipoles (incl. skew)
- □ Generate twiss and import optic to LSA
 - Use of the same tools as for standard optic import
- □ Generate a beamprocess based on prepared optic
- □ Generate settings for the beamprocess
- Dump all LSA currents
- Compare LSA current sign with MAD-X polarity flag definition formula
 - Take care about logical hardware covering both beams
 - Take into account cabling

Compliance MAD-X vs. LSA – Outcome (B1)

			MAD K							CURR SIGN	
NAME	BV	POLARITY	sign			DEVICE NAME		LSA K	LSA I	AGREE	
MQXA.1L1	0		-1		MQXA.1L1	MQXA1.L1	B1	-0.008577	408.077	TRUE	
MQXB.A2L1	0	-	1	1	MQXB.A2L1	MQXB2.L1	B1	0.01	697.674		
MCO.10L2.B1	0		1	1	MCO.10L2.B1	RCO.A12B1	B1	0.010000	0.028		
MCO.10L3.B1	0		1	1	MCO.10L3.B1	RCO.A23B1	B1	0.010000	0.028		
MCOX.3L1	0		1		MCOX.3L1	RCOX3.L1	B1	0.010000	0.027	TRUE	
MCS.A10L2.B1	0		1	1	MCS.A10L2.B1	RCS.A12B1	B1	0.166809	40.920		
MCS.A10L3.B1	0	-	1	1	MCS.A10L3.B1	RCS.A23B1	B1	0.165841	40.683		
MCSSX.3L1	0	1	1	1	MCSSX.3L1	RCSSX3.L1	B1	0.001000	0.200	TRUE	
MCSX.3L1	0		1	1	MCSX.3L1	RCSX3.L1	B1	0.001000	0.743		
MBX.4L2	0	-1	-1	1	MBX.4L2	RD1.L2	B1	-0.000162	345.504	TRUE	
MBXW.A4L1	0	1	1	1	MBXW.A4L1	RD1.LR1	B1	0.000055	43.115	TRUE	
MBRC.4L1.B1	0	-1	-1	1	MBRC.4L1.B1	RD2.L1	B1	-0.000119	283.570	TRUE	
MBW.A6L3.B1	0	-1	-1	1	MBW.A6L3.B1	RD34.LR3	B1	0.000056	40.927	TRUE	
MBRB.5L4.B1	0	1	1	1	MBRB.5L4.B1	RD4.L4	B1	0.000166	394.693	TRUE	
MO.22L2.B1	0	-1	1	-1	MO.22L2.B1	ROD.A12B1	B1	0.010000	-0.022	TRUE	
MO.25L2.B1	0	1	1	1	MO.25L2.B1	ROF.A12B1	B1	0.010000	0.022	TRUE	
MQML.10L1.B1	0	1	1	1	MQML.10L1.B1	RQ10.L1B1	B1	0.007324	296.597	TRUE	
MQY.4L1.B1	0	1	1	1	MQY.4L1.B1	RQ4.L1B1	B1	0.005011	167.413	TRUE	
MQWA.A4L3.B1	0	1	1	1	MQWA.A4L3.B1	RQ4.LR3	B1	0.001241	34.841	TRUE	
MQWA.A5L3.B1	0	-1	-1	1	MQWA.A5L3.B1	RQ5.LR3	B1	-0.001304	36.726	TRUE	
MQ.12L2.B1	0	-1	-1	1	MQ.12L2.B1	RQD.A12	B1	-0.008601	685.805	TRUE	
MQ.11L2.B1	0	1	1	1	MQ.11L2.B1	RQF.A12	B1	0.008990	716.997	TRUE	
MQS.23L3.B1	0	1	1	1	MQS.23L3.B1	RQS.A23B1	B1	0.000100	0.625	TRUE	
MQS.23L2.B1	0	1	1	1	MQS.23L2.B1	RQS.L2B1	B1	0.000100	0.625	TRUE	
MQS.27L2.B1	0	1	1		MQS.27L2.B1	RQS.L2B1	B1	0.000100	0.625	TRUE	
MQS.23R3.B1	0	1	1	1	MQS.23R3.B1	RQS.R3B1	B1	0.000000	0.000	FALSE	PNO = 0
MQS.27R3.B1	0	1	1	1	MQS.27R3.B1	RQS.R3B1	B1	0.000000	0.000	FALSE	 PNO = 0
MQSX.3L1	0	1	1	1	MQSX.3L1	RQSX3.L1	B1	0.000100	1.021	TRUE	_
MQT.12L1.B1	0	1	-1	-1	MQT.12L1.B1	RQT12.L1B1	B1	-0.000423	-2.647	TRUE	
MQWB.4L3.B1	0	1	1	1	MQWB.4L3.B1	RQT4.L3	B1	0.000689	22.044	TRUE	
MQT.14L2.B1	0	-1	1		MQT.14L2.B1	RQTD.A12B1	B1	0.000010	-0.063		
MQT.15L2.B1	0		1		MQT.15L2.B1	RQTF.A12B1	B1	0.000010	0.063		
MS.12L2.B1	0		-1		MS.12L2.B1	RSD1.A12B1	B1	-0.108181	9.612		
MS.11R1.B1	Ō	1	1		MS.11R1.B1	RSF1.A12B1	B1	0.064897	5.766		
MSS.29L2.B1	Ō		1		MSS.29L2.B1	RSS.A12B1	B1	0.001000	0.089		
MSS.34L1.B1	Ō	-	1		MSS.34L1.B1	RSS.A81B1	B1	0.001000	0.089		

1 November 2010

MAD-X vs. LSA magnet polarities

			MADIK							CURR SIGN	
		POLARITY	sign		ELEMENT_NAME		BEAM			AGREE	
MQXA.1L1	-1	-1	1		MQXA.1L1	MQXA1.L1	B2	-0.008577	408.077	TRUE	
MQXB.A2L1	-1	1	-1		MQXB.A2L1	MQXB2.L1	B2	0.008577	697.674		
MCO.10L2.B2	-1	1	1		MCO.10L2.B2	RCO.A12B2	B2	0.010000	0.028		cabling
MCOX.3L1	-1	1	-1		MCOX.3L1	RCOX3.L1	B2	0.010000		TRUE	
MCS.A10L2.B2	-1		1		MCS.A10L2.B2	RCS.A12B2	B2	0.001000			cabling
MCSSX.3L1	-1	1	-1		MCSSX.3L1	RCSSX3.L1	B2	0.001000	0.200	TRUE	
MCSX.3L1	-1	1	-1		MCSX.3L1	RCSX3.L1	B2	0.001000	0.743		
MBX.4L2	-1	-1	· ·		MBX.4L2	RD1.L2	B2	-0.000162		TRUE	
MBXW.A4L1	-1	1	-1		MBXW.A4L1	RD1.LR1	B2	0.000055	43.115		
MBRC.4L1.B2	-1	1	1		MBRC.4L1.B2	RD2.L1	B2	-0.000119			common for B1 & B
MO.25L2.B2	-1	-1	1	1	MO.25L2.B2	ROD.A12B2	B2	0.010000			
MQML.10L1.B2	-1	-1	-1	-1	MQML.10L1.B2	RQ10.L1B2	B2	-0.007192			cabling
MQY.4L1.B2	-1	-1	-1	-1	MQY.4L1.B2	RQ4.L1B2	B2	-0.004979	166.258		cabling
MQWA.A4L3.B2	-1	-1	-1	-1	MQWA.A4L3.B2	RQ4.LR3	B2	0.001241	34.841	FALSE	cabling
MQ.11L2.B2	-1	-1	-1	-1	MQ.11L2.B2	RQD.A12	B2	-0.008601	685.805	FALSE	common for B1 & B
MQ.12L2.B2	-1	1	1	-1	MQ.12L2.B2	RQF.A12	B2	0.008990	716.997	FALSE	common for B1 & B
MQS.23L2.B2	-1	1	1	-1	MQS.23L2.B2	RQS.A12B2	B2	0.000100	0.625	FALSE	cabling
MQS.23L1.B2	-1	1	1	-1	MQS.23L1.B2	RQS.L1B2	B2	0.000100	0.625	FALSE	cabling
MQS.27L1.B2	-1	1	1	-1	MQS.27L1.B2	RQS.L1B2	B2	0.000100	0.625	FALSE	cabling
MQS.27R8.B2	-1	1	1	-1	MQS.27R8.B2	RQS.R8B2	B2	0.000100	0.625	FALSE	cabling
MQSX.3L1	-1	1	-1	1	MQSX.3L1	RQSX3.L1	B2	0.000100	1.021	TRUE	
MQT.12L1.B2	-1	-1	1	1	MQT.12L1.B2	RQT12.L1B2	B2	0.001244	-7.778	FALSE	cabling
MQWB.4L3.B2	-1	1	1	-1	MQWB.4L3.B2	RQT4.L3	B2	0.000689	22.044	FALSE	common for B1 & B
MQT.15L2.B2	-1	-1	1	1	MQT.15L2.B2	RQTD.A12B2	B2	0.000010	-0.063	FALSE	cabling
MQT.14L2.B2	-1	1	1	-1	MQT.14L2.B2	RQTF.A12B2	B2	0.000010	0.063	FALSE	cabling
MS.11R1.B2	-1	-1	-1	-1	MS.11R1.B2	RSD1.A12B2	B2	-0.108851	9.671	FALSE	cabling
MS.12L2.B2	-1	1	1	-1	MS.12L2.B2	RSF1.A12B2	B2	0.065437	5.814	FALSE	cabling
MSS.28L2.B2	-1	1	1	-1	MSS.28L2.B2	RSS.A12B2	B2	0.001000	0.089		cabling
MSS.33R8.B2	-1	1	1	-1	MSS.33R8.B2	RSS.A81B2	B2	0.001000	0.089	FALSE	cabling

Conclusions

- Unipolar power converters take positive references
 - □ LSA uses calibration sign in one place to take care of this
 - Cabling should give correct magnet polarity
- For bi-polar circuits
 - Stick with natural strengths, calculate positive or negative currents as required
 - □ Again rely on correct cabling
- MAD-X polarity takes into account machine conventions and cabling
- Polarity might been accidentally flipped (e.g. in optic import procedure or by setting wrong LSA calibration sign)
 But it is now proved this has not happened