Comparing IBS with Data (pp,PbPb)

Tom Mertens John Jowett

IBS calculation method

- Calculate IBS growth times at 3.5 Z TeV varying 3 parameters (MAD-X, Mathematica packages John Jowett):
 - RF Voltage [1 MV-16 MV]
 - Longitudinal Emittance [0.5 eVs 2.5 eVs]
 - Normalized Transverse Emittance (assuming round beams

 σ_{x} = σ_{y}) [2.0 μ m rad – 17.0 μ m rad]

- Creating an interpolation function on this 3-dimensional grid for :
 - Bunch length
 - Momentum spread
 - Longitudinal growth time
 - Transverse growth time

Note:

IBS calculation is done with the algorithm implemented in MAD-X

Fill 1400 (pp, during physics) [1]

- Data sources : Atlas Luminous Region (Timber)/RF Voltage (Timber)
- Applied moving average to raw data
- Created interpolating function for this averaged data
- Use the initial value as input for the IBS interpolating function
- \bullet Output growth times τ of the IBS interpolation used in :

$$\varepsilon(t) = \varepsilon(0) \exp\left[\frac{t}{\tau}\right]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curves)!!!

Red curve:

Calculated longitudinal emittance from atlas luminous region data using the interpolating function created for this data.

Fill 1400 (pp, during physics) [2]

• Data sources : Atlas Luminous Region (Timber/LPC webpage)/RF Voltage (Timber)/Atlas Luminosity(LPC)

- Creating input for the IBS interpolating function:
 - Longitudinal :
 - Bunch length from Atlas Luminous Region (Timber)
 - Using RF Voltage and MAD-X calculate momentum spread
 - Calculate longitudinal emittance using:

$$\varepsilon = 4\pi \frac{\sigma_s}{c} \sigma_E E_0$$

• Transverse:

• Calculated from Atlas luminous region (LPC) using

$$\varepsilon_i = 2 \frac{\sigma_i^2}{\beta^*}, i = x, y$$

• The factor 2 comes from definition of luminous regions

• At each data point the IBS growth time is calculated

- IBS with emittances calculated from Atlas luminosity data (LPC)
- IBS with emittances calculated from Atlas luminous region data (LPC/Timber)

• Calculated growth times from Atlas longitudinal luminous region data (Timber) after taking moving average.

Fill 1400 Longitudional Growth times

$$\varepsilon = \gamma_{coll} \frac{I_1 I_2 k_C f}{4\pi \beta^* L k_{b1} k_{b2}}$$

- $k_{b1,2}$ = number of bunches in Beam 1,2 k_{c} = number of colliding bunches in Atlas L = luminosity f = revolution frequency
- I_i = intensities B1,2

Fill 1400 (pp, during physics) [3]

•Data sources : Atlas Luminous Region (LPC webpage)/RF Voltage (Timber)

•Use the initial value as input for the IBS interpolating function

• Output growth times τ of the IBS interpolation used in

$$\varepsilon(t) = \varepsilon(0) . \exp[\frac{t}{\tau}]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curves)!!!

Red curve:

Fill 1400 (pp, during physics) [4]

- Data sources : Atlas Luminous Region (Timber/LPC webpage)/RF Voltage (Timber)/Atlas Luminosity(LPC)
- Creating input for the IBS interpolating function:
 - Longitudinal :
 - Bunch length from Atlas Luminous Region (Timber)
 - Using RF Voltage and MAD-X calculate momentum spread
 - Calculate longitudinal emittance using:

$$\varepsilon = 4\pi \frac{\sigma_s}{c} \sigma_E E_0$$

• Transverse:

• Calculated from Atlas luminous region (LPC) using

$$\varepsilon_i = 2 \frac{{\sigma_i}^2}{\beta^*}, i = x, y$$

• The factor 2 comes from definition of luminous regions

• At each data point the IBS growth time is calculated

- IBS with emittances calculated from Atlas luminosity data (LPC)
- IBS with emittances calculated from Atlas luminous region data (LPC/Timber)

• Calculated growth times from Atlas transverse luminous region data (LPC) after taking moving average.

Fill 1440 (pp, during physics) [1]

- Data sources : Atlas Luminous Region (Timber)/RF Voltage (Timber)
- Applied moving average to raw data
- Created interpolating function for this averaged data
- Use the initial value (3 different) as input for the IBS interpolating function
- Output growth times τ of the IBS interpolation used in :

$$\varepsilon(t) = \varepsilon(0).\exp[\frac{t}{\tau}]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curves)!!!

Red curve:

Calculated longitudinal emittance from atlas luminous region data using the interpolating function created for this data.

Fill 1440 (pp, during physics) [2]

• Data sources : Atlas Luminous Region (Timber/LPC webpage)/RF Voltage (Timber)/Atlas Luminosity(LPC)

- Creating input for the IBS interpolating function:
 - Longitudinal :
 - Bunch length from Atlas Luminous Region (Timber)
 - Using RF Voltage and MAD-X calculate momentum spread
 - Calculate longitudinal emittance using:

$$\varepsilon = 4\pi \frac{\sigma_s}{c} \sigma_E E_0$$

• Transverse:

• Calculated from Atlas luminous region (LPC) using

$$\varepsilon_i = 2 \frac{{\sigma_i}^2}{\beta^*}, i = x, y$$

• The factor 2 comes from definition of luminous regions

• At each data point the IBS growth time is calculated

- IBS with emittances calculated from Atlas luminosity data (LPC)
- IBS with emittances calculated from Atlas luminous region data (LPC/Timber)

• Calculated growth times from Atlas longitudinal luminous region data (Timber) after taking moving average.

Fill 1440 Longitudional Growth times τ_L [Hours]

Fill 1440 (pp, during physics) [3]

•Data sources : Atlas Luminous Region (LPC webpage)/RF Voltage (Timber)

•Use the initial value as input for the IBS interpolating function

• Output growth times τ of the IBS interpolation used in

$$\varepsilon(t) = \varepsilon(0).Exp[\frac{t}{\tau}]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curves)!!!

Red curve:

Fill 1440 (pp, during physics) [4]

- Data sources : Atlas Luminous Region (Timber/LPC webpage)/RF Voltage (Timber)/Atlas Luminosity(LPC)
- Creating input for the IBS interpolating function:
 - Longitudinal :
 - Bunch length from Atlas Luminous Region (Timber)
 - Using RF Voltage and MAD-X calculate momentum spread
 - Calculate longitudinal emittance using:

$$\varepsilon = 4\pi \frac{\sigma_s}{c} \sigma_E E_0$$

• Transverse:

• Calculated from Atlas luminous region (LPC) using

$$\varepsilon_i = 2 \frac{{\sigma_i}^2}{{\beta^*}}, i = x, y$$

• The factor 2 comes from definition of luminous regions

• At each data point the IBS growth time is calculated

- IBS with emittances calculated from Atlas luminosity data (LPC)
- IBS with emittances calculated from Atlas luminous region data (LPC/Timber)

• Calculated growth times from Atlas transverse luminous region data (LPC) after taking moving average.

Transverse emittance calculated from the measurement of different devices. The IBS curve is generated as before, using the ATLAS initial data as input.

- Data sources : Timber (BSRTS, BGI, BGI profile , BCTDC)/Atlas luminous regions (LPC website)
- BSRTS (cycles through the bunches) :
 - Taking moving average of the raw data and creating an interpolating function for the horizontal and vertical beam sigma's (for averaging over the bunches)

• Using $\varepsilon_i = \frac{{\sigma_i}^2}{\beta}$, i = x, y with β the optical beta function at the BRSTS (horizontal and vertical location in the LHC, using John Jowett's mathematica packages for using MAD-X in mathematica to calculate the optical function)

- Combining horizontal and vertical (and normalizing) : $\mathcal{E}_{xy} = \gamma_{coll} \sqrt{\mathcal{E}_x \mathcal{E}_y}$
- BGI : same procedure as for BSRTS

Fill 1496 (PbPb, during physics) [3]

•BGI profile:

- Raw data looks like plot below
- Selecting the right data points
- Calibrating the selected data (0.0816 mm/pixel, Mariusz Gracjan Sapinski)

Fill 1496 (PbPB, during physics) [4]

- •BGI profile:
 - Fitting with a Gaussian
 - Using the sigma's from the Gaussian's as beam sigma's
 - Apply the same procedure as for BGI and BSRTS to these beam sigma's

Fill 1496 (PbPB, during physics) [5]

- ATLAS Luminosity :
 - Raw BCTDC data for the intensity and the Atlas luminous region luminosity data
 - Take a moving average to smoothen the data
 - Create interpolating functions (sampling rates for luminosity and intensity differ and we want to do our calculation at a specific time for all the data)
 - Calculate normalized emittance using

$$\varepsilon = \gamma_{coll} \frac{I_1 I_2 k_C f}{4\pi \beta^* L k_{b1} k_{b2}}$$

 $k_{b1,2}$ = number of bunches in Beam 1,2 k_c = number of colliding bunches in Atlas L = luminosity f = revolution frequency

 I_i = intensities B1,2

Fill 1496/1504 (PbPb, during physics) [6]

• Data sources : Atlas Luminous Region (Timber)/RF Voltage (Timber)

- Applied moving average to raw data
- Created interpolating function for this averaged data
- Use the initial value as input for the IBS interpolating function
- Output growth times τ of the IBS interpolation used in :

$$\varepsilon(t) = \varepsilon(0) \exp\left[\frac{t}{\tau}\right]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curve)!!!

Red curve:

Calculated longitudinal emittance from atlas luminous region data using the interpolating function created for this data.

Fill 1496 Longitudinal Emittance Atlas $\epsilon_{s,N}$ [eVs/charge] 2.6 Meas Atlas σ_z **IBS** 2.4 2.2 Time[s] 5000 10000 15000 20 000 Fill 1504 Longitudinal Emittance Atlas $\epsilon_{s,N}$ [eVs/charge] **2.8** ⊢ 2.6 Meas Atlas σ_z 2.4 IBS 2.2 2.0 1.8 1.6 Time[s] 5000 15000 10 000 20 000 25 000

Fill 1496 (pp, during physics) [8]

•Data sources : Atlas Luminous Region (LPC webpage)/RF Voltage (Timber)

•Use the initial value as input for the IBS interpolating function

• Output growth times τ of the IBS interpolation used in

$$\varepsilon(t) = \varepsilon(0) \exp\left[\frac{t}{\tau}\right]$$

ONLY initial values of emittances used in the IBS simulated curves (Blue curve)!!!

Red curve:

Fill 1496 (pp, during physics) [9]

•Data sources : Atlas Luminous Region (LPC webpage)/RF Voltage (Timber)

•Use the initial value as input for the IBS interpolating function

• Output growth times τ of the IBS interpolation used in

$$\varepsilon(t) = \varepsilon(0) \exp\left[\frac{t}{\tau}\right]$$

4

ONLY initial values of emittances used in the IBS simulated curves (Blue curve)!!!

Red curve:

Conclusions and outlook

- The different measuring devices seem to be converging (except BSRTS, but preliminary recalibration algorithm has been received since)
- Longitudinal emittance: at the beginning of collisions the growth times seem to agree with IBS, but clearly other effects need to be taken into account
- Transverse emittance: strong deviation from what IBS predicts for protons and ions
- Particle tracking simulations are under way to compare with MAD-X algorithm and include other effects (collisions, radiation damping, synchrotron motion,...)