interaction of macroparticles with the LHC proton beam

Zhao Yang, EPFL
BE ABP LCU meeting, 13 December 2010
simulate the macroparticle trajectory, charge state and resulting beam lifetime
assume mass, density, initial position and charge state
forces: gravity, beam electric field, electric image charge
charging from ionization
beam loss due to nuclear interaction (cross section) quench threshold ~ a few $10^{7} \mathrm{p} / \mathrm{s}$
extend IPAC'10 study of
M. Giovannozzi, A. Xagkoni, F. Zimmermann:
varying initial position, second crossing, ...

table with beam \& particle parameters

Acceleration from Gravity
Radius of the vacuum chamber

Circumference of the storage ring
Total number of protons in nprotons= $0.9^{*} 10^{\wedge} 11^{*} 25$ the beam(protons/beam) crossection rms beam size
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{\wedge} 2$
$\mathrm{b}=0.02 \mathrm{~m}$
$\mathrm{C}=26700 \mathrm{~m}$
$0.42^{*} 10^{\wedge}(-28) \mathrm{m}^{\wedge} 2$
$\sigma=0.0003 \mathrm{~m}$

Resulting loss rate with different $\mathrm{x}[0]$ and different mass

Loss rate [protons/s]

```
A=1012 ~1016; x(0)=0.0001mm
```


Loss rate [protons/s]

$$
A=10^{12} \sim 10^{16} ; x(0)=0.0003 \mathrm{~mm}
$$

We can measure the maximum of each beam lost rate, and fit them by x co-ordinate with function $\ln y=a+b x+c x^{\wedge} 2$
$\ln (y)\left(\frac{\mathrm{Nb} \text { protons }}{s}\right)$

this is the plot with peak loss for different masses with $x[0]=0.0001$ m

Purpose: continue the calculation of particle motion and beam loss for a longer time to see the time interval at which they cross the beam the second time

To do this, we will need to extend the equations of motion:

1) For those particles which fall down we do not need to do anything special.
2) But for those particles which are repelled and move upwards, we should check if their y value exceeds the height of the chamber when this happens we can reset their charge Q to -1 ,set the vertical velocity to 0 , and set them back onto a distance equal to the chamber radius.

$$
Q[t]=-1 \quad x^{\prime}[t]=0 \quad y^{\prime}[t]=0
$$

This is an example for it: $A=10^{\wedge} 12 ; x[0]=0.0001$

The point at which $y[t]=$ sqrt ($\left.(b-R[A])^{\wedge} 2-x[t] \wedge 2\right)$ is $t=0.0698373$
Then we set:
$y^{\prime}[0.0698373]=0$
$x^{\prime}[0.0698373]=0$
Q[0.0698373]=-1
And we can get a new
curve
for $\{t, 0.0698373,0.02\}$

Combining those two curves, we can get the curve which shows the particles cross the beam the second time :

Some other examples with different conditions

the table of $\Delta \mathrm{T}$ with different mass and different $\mathrm{x}[0]$

| $\mathrm{x}=0.0001$ | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | $10^{\wedge} 12$ | $10^{\wedge} 13$ | $10^{\wedge} 14$ | $10^{\wedge} 15$ | $10^{\wedge} 16$ |
| $\mathrm{t}(\mathrm{s})$ | 0.070064 | 0.0701 | 0.682928 | 0.0649 | 0.001548 |
| $\mathrm{x}=0.0003$ | | | | | |
| A | $10^{\wedge} 12$ | $10^{\wedge} 13$ | $10^{\wedge} 14$ | $10^{\wedge} 15$ | |
| t | 0.064052 | 0.060711 | 0.052688 | 0.007779 | |
| $\mathrm{x}=0.0005$ | | | | | |
| A | $10^{\wedge} 12$ | $10^{\wedge} 13$ | | | |
| t | 0.051286 | 0.040636 | | | |
| $\mathrm{x}=0.0007$ | | | | | |
| A | $10^{\wedge} 12$ | | | | |
| t | 0.023107 | | | | |

This is the trajectory in $x-y$ space for $A=10^{\wedge} 12$ to $10^{\wedge} 15$, the particles are charging up to be repelled upwards for the $1^{\text {st }}$ time and all of them are falling down for the $2^{\text {nd }}$ time.

plot with beam loss for $1^{\text {st }}$ and $2^{\text {nd }}$ crossing with $x[0]=0.0001 \mathrm{~m}$

plan for future work

- complete project report
- repeat calculations for higher beam current
- vary beam size (injection)
- introduce magnetic field
- look at other shapes and materials (plastic)
- make mathematica notebooks more automatic

