report from SLAC visit

SAREC 10-12 January ATF2 project meeting, 13-14 January

SAREC = SLAC Accelerator Research Experimental program Committee

SAREC shall guide programme for FACET, ESTB, NLCTA, ASTA, etc

First meeting judged and prioritized 8 proposals one letter of intent, and one expression of interest, for the first FACET running which is expected in summer 2011.

SAREC Committee:

```
Uwe Bergmann (SLAC)
Gerry Dugan (Cornell)
Eric Esarey (LBL)
Jie Gao (IHEP)
Kathy Harkay (ANL)
Carsten Hast (SLAC, Scientific Secretary)
Sergei Nagaitsev (FNAL)
Andrei Seryi (Chair, John Adams Institute)
Vitaly Yakimenko (BNL)
Kaoru Yokoya (KEK)
Frank Zimmermann (CERN)
```

The **general charge** to the SAREC committee is to:

•Evaluate the merit of proposed R&D in SLAC's experimental accelerator research facilities for advancing world-class accelerator science or accelerator technology

•Evaluate the **feasibility of proposed R&D** in SLAC's accelerator research facilities

•Review the **progress of existing R&D** in SLAC's accelerator research facilities

proposals & their ranking

Ranking
Excellent
Excellent
Fair
None (full proposal invited)
Excellent
Postponed
None (full proposals invited)
Good (for short pilot run only)
Very good
Good

11th ATF2 Project Meeting exceptionally held at SLAC Frank Zimmermann represented CLIC Daniel Schulte organized CLIC proposals

themes:

- beaminstrumentation status
- beam tuning progress in 2010
- □ how to reach the first ATF2 goal
- □ how to reach the second ATF2 goal
- □ proposals for "ATF3" (≥2012) 9 from CLIC

goals of ATF2:

- (A) Achievement of a 37 nm beam size
 - (A1) Demonstration of a compact final focus system based on a local chromaticity correction scheme
 - (A2) Maintenance of the small beam size
- (B) Control of the beam position
 - (B1) Demonstration of beam orbit stabilization with nano-meter precision at IP.
 - (B2) Establishment of a beam jitter controlling technique at the nano-meter level with an ILClike beam

Parameters at ATF2

T. Tauchi

IP Parameter	nominal	April 2010	May 2010	Dec 2010
Beam energy	1.3GeV	1.3GeV	1.3GeV	1.3GeV
Emittance in x 2 nm		1.7nm	1.7nm	1.8-2.7nm
Emittance in y	12 pm	<10pm	<10pm	28-64pm
Beta function in x	4 mm	4cm	4cm	10mm
Beta function in y	0.1mm	lmm	lmm	0.1mm
beam size in x	2.8 µm	~10 µm	~10 µm	7.5µm
beam size in y	35 nm	900 nm	300 nm	439(247) nm

G. White

ATF2 Tuning Shifts Winter 2010

- 5 Weeks of shifts available for ATF2 tuning since spring/summer run
- ~6 shifts per week weeks 1-4 + 1 week dedicated run week 5.

M. Woodley

ATF / ATF2 Schematic Layout Emittance Measurement 5 × WS, 4 × OTR Final 10 μ W wires Coupling **Final Focus** $(x/y/+10^{\circ}/-10^{\circ})$ Doublet Correction β-match +++Inflector Laserwire EXT Laserwire IPBSM (x/y) 5 μ C wires (x/y) screen Damping Ring FOBO

Dump Ο **PIP WS** 10μ W wires 10μ W wires (x/y/45°) 5 μ C wires (y/+1.3°/-1.3°) Beam Transport XSR S-band 1.3 GeV S-band Linac **RF** Gun 120 m 11th ATF2 Project Meeting, M. Woodley 10/29 January 13 2011

M. Woodley

EXT Tuning

OTROX before corrections

OTROX after dispersion correction

OTROX after coupling correction

T. Okugi

IP-BSM 2 degree mode

At first, we found the minimum beam size point by using 2 degree mode of IP-BSM.

Since the beam size was roughly set to the optimum values, we switched to the 6 degree mode.

T. Okugi

IP-BSM 6 degree mode

Waiat, dispersion and coupling were scanned twice.

T. Okugi

<xy> knob

We also applied the <xy> knob (combination of QK magnets).

IP-BSM was most stable condition in these scanning.

The minimum beam size in this operation was 247nm (M=0.950) at 2nd ηy scan.

Since the knobs were optimized, we switched to the 30 degree mode.

30 degree mode

Z scan result

 Could not see modulation

Contrast measurement

Large interference fringe pitch, small beam size M nearly 1

Contrast ~ offset from ideal modulation

CERN/CLIC proposal: ultra-low beta-function

R. Tomas, E. Marin

motivation

project	<i>L</i> *[m]	β _y * [μm]	ξ _y
ATF2 nominal	1.0	100	~19000
ILC design	3.5	400	~15000
ATF2 ultra-low	1	25	~76000
CLIC 3 TeV	3.5	90	~63000

limitation from multipoles:

To prove CLIC chromaticity levels in ATF2 requires a factor 4 lower IP beta function. The main obstacle is the field quality (already issue for ATF2 nominal)

with measured magnetic multipoles; optimization with _{5x} [μm] MAPCLASS; no further reduction when decreasing β_v^* below 40 μm

8.0

0.2

0.4

0.6

number of iterations [1000]

all elements misaligned and tuning knobs applied; beam sizes after tuning not as good as design; work in progress to improve further

0.8

proposed CERN/CLIC contributions at ATF3

1) Ultra-low beta-function

CLIC considers providing warm QF1 with larger aperture

2) Ground motion feedback/feed-forward

Ground motion sensors on each relevant magnet to predict beam orbit

- 3) Test of **quadrupole stabilisation** in ATF extraction Verify stabilisation performance with beam
- 4) Developing damping ring extraction kickers systems Would need ATF3 to verify kicker performance
- **5) CSR induced beam instability in ATF-DR** Experiments to distinguish between theories
- 6) DR optics, emittance tuning & IBS studies
- 7) Superconducting wiggler for ATF-DR
- 8) BPM tests

CLIC main linac **BPMs** developed by FNAL tested at ATF2

9) Contributions to ATF2/3 operation