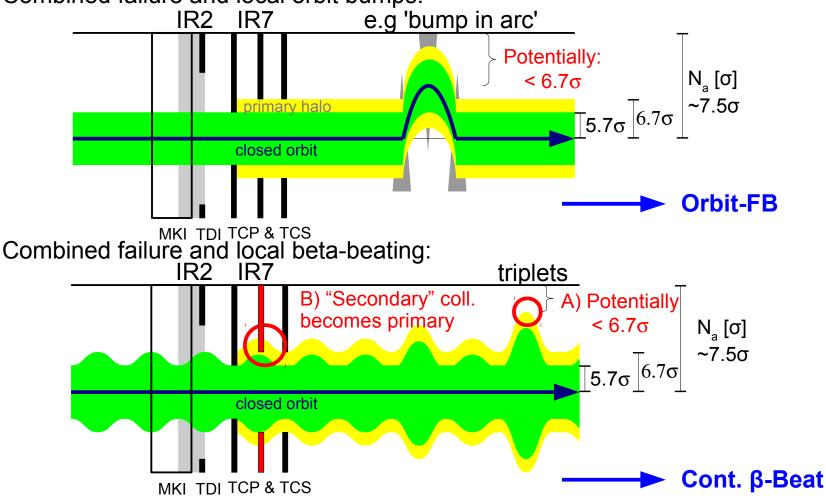


Some Notes on:

Continuous LHC Beta-Beat Measurements – Status and Prospects for 2011 –

R. J. Steinhagen, A. Boccardi, E. Calvo Giraldo, M. Gasior, J. L. Gonzalez, O. R. Jones, BE-BI



Outline

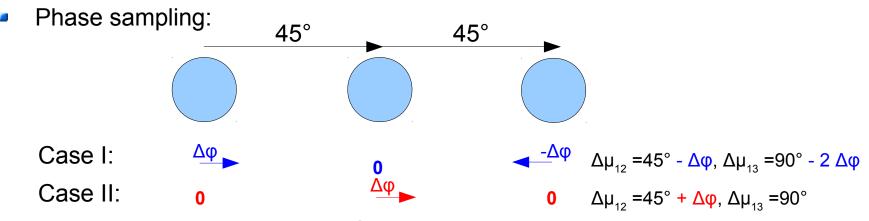
- Motivation LHC dependence on known <u>&</u> constant beta-function
 - Machine Protection and Collimation, Physics, Squeeze Diagnostics
 - various existing techniques: 'kick'-type excitation & BPMs, K-modulation & Q-PLL, Closed-orbit-response (LOCO)
 - do not achieve required resolution, and/or
 - not compatible with nominal LHC operation (ex. levels/beam intensities)
- The aim of the continuous beta-beat measurement studies at the LHC was to
 - provide a proof-of-feasibility for the measurement technique, and
 - to assess magnitude and time-scale of the LHC lattice changes.
 - Continuous Beta-Beat system working principle
 - difference to BPM-based acquisition
 - Fundamental constraints and limits
 - LHC installation

Combined failure and local orbit bumps:

- Limits maximum safe intensity and minimum β^* in the LHC
 - Mitigation: tighter collimator settings (but implies less aperture \rightarrow poorer life-time)

- Two beta-beat components:
 - Static-global \rightarrow AC-dipole driven + BPMs (R. Tomas et al.)
 - absorbed by the beam-based collimator alignment procedure
 - Dynamic-local \rightarrow continuous beta-beat system (BI, IPAC'10)
 - check whether these requirements are kept in a fully dynamic case
 → initial installation around the primary collimators in IR7

 Nominal collimator settings also imply maximum um-level beam excursions before scraping the beam



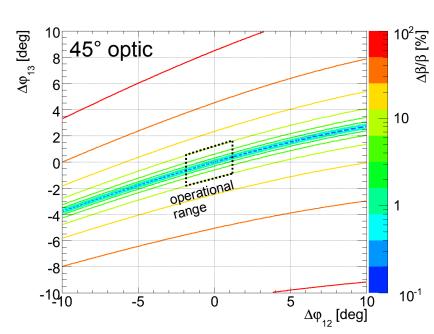
- Squeeze involves > 45 individual magnetic strength settings (Optics), so far: no continuous check on effective optics during/at the end of individual steps
- "Classic" methods may not reach/be compatible with nominal requirements
 - K-modulation induced Q-Changes:
 - $\Delta Q \approx \frac{1}{4\pi} \cdot \beta(s) \cdot \Delta k(s)$ Limit: knowledge on quadrupole transfer function (hysteresis, D&S, β |^{max} \approx 4.2km & $\Delta Q^{max} < 10^{-3} \rightarrow \Delta k/k_{nom} < 5.10^{-5}$)
 - Betatron-coupling, ...
 - Only local (& slow) measurement
 - Kick + turn-by-turn analysis of BPM (phase and/or amplitude), limits:
 - Potential particle loss (beta-functions at triplet) & emittance blow-up
 - Systematic phase errors, amplitude detuning/Landau damping
 - large kicks may probe phase advances (dynamic aperture) which may not be representative for nominal beam operation
 - beam will be collimated at 6 sigma (kick amplitudes < 1.2 mm @7TeV)!</p>
 - ... not ideal for continuous monitoring/regular operation (ε blow-up).
 - Closed orbit response analysis (LOCO):
 - resolution/performance compatible with nominal operation
 - Limit: scan requires several minutes per IP (full scan: ~2 OP-shifts)

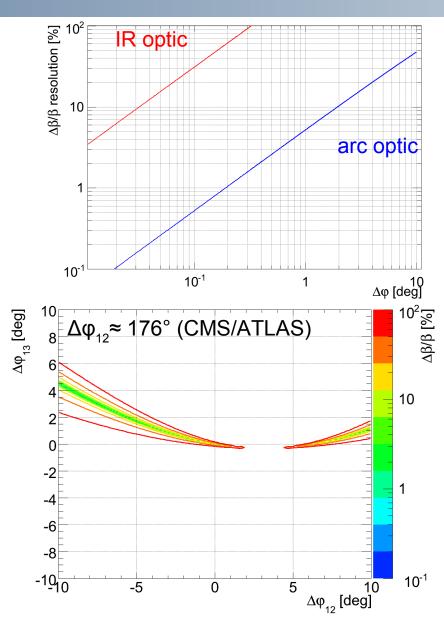
- Long history at CERN. Original idea dates back to AB-BI report (doctoral thesis) P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)
- ... beating in amplitude related to beating in phase:

$$\frac{\Delta\beta}{\beta}(s) = \frac{1}{2\sin(2\pi Q)} \oint \beta_k \cos(2\cdot|\mu(s) - \mu(a)| - 2\pi Q) \Delta k(a) \, da$$
$$\mu(s) := \int_0^s \frac{1}{\beta(a)} da \qquad \longrightarrow \qquad \frac{\Delta\mu}{\mu}(s) \sim \frac{\Delta\beta}{\beta}(s)$$

Beta-Beat reconstruction (FB/Control would work with phases):

 $\frac{\Delta \beta_1}{\beta_1} = \frac{\cot(\Delta \mu_{12}^{meas.}) - \cot(\Delta \mu_{13}^{meas.})}{\cot(\Delta \mu_{12}^{theo.}) - \cot(\Delta \mu_{13}^{theo.})} \quad \frac{\Delta \beta_2}{\beta_2} = \frac{\cot(\Delta \mu_{12}^{meas.}) - \cot(\Delta \mu_{23}^{meas.})}{\cot(\Delta \mu_{12}^{theo.}) - \cot(\Delta \mu_{23}^{theo.})} \quad \frac{\Delta \beta_3}{\beta_3} = \frac{\cot(\Delta \mu_{23}^{meas.}) - \cot(\Delta \mu_{13}^{meas.})}{\cot(\Delta \mu_{23}^{theo.}) - \cot(\Delta \mu_{13}^{theo.})}$ N.B. Phase-Beating usually used for correction!

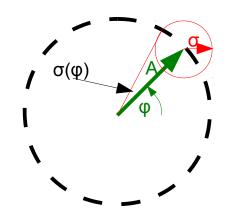


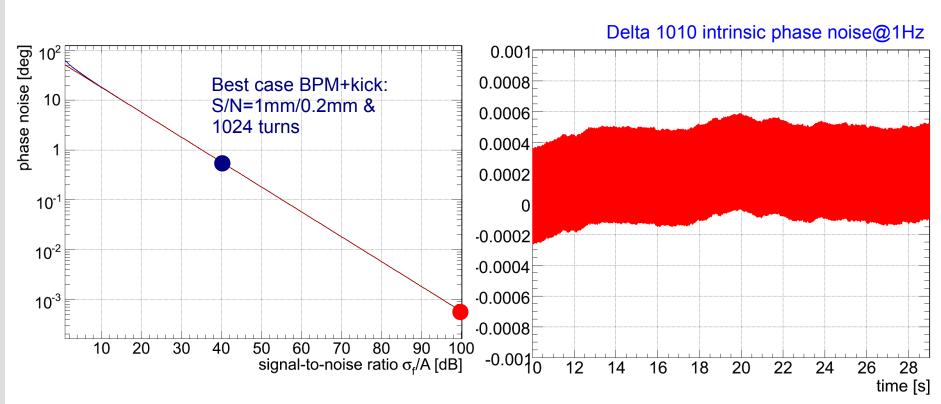

Beta-Beat Sensitivity and Error Estimates

Residual resolution/systematic error

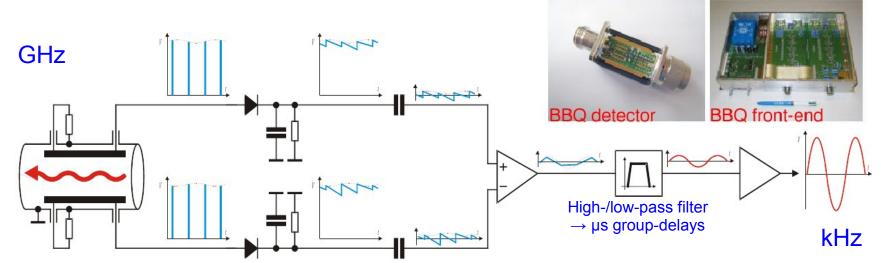
$$\frac{\Delta \beta_1}{\beta_1} = \frac{\cot\left(\Delta \mu_{12}^{meas.}\right) - \cot\left(\Delta \mu_{13}^{meas.}\right)}{\cot\left(\Delta \mu_{12}^{theo.}\right) - \cot\left(\Delta \mu_{13}^{theo.}\right)}$$
$$\Delta \mu_{1i}^{meas.} := \Delta \mu_{1i}^{theo.} + \Delta \varphi_{1i}$$

- ARC optics: requires error below ~1°
- IP optics: requires error below ~0.02°

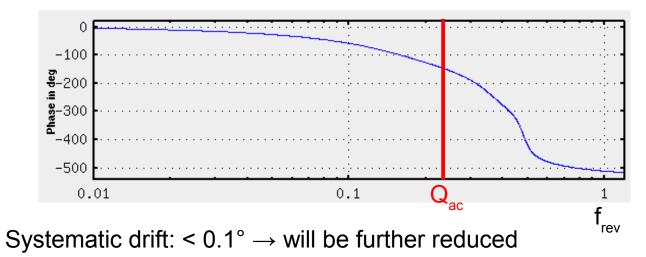



N.B. Plots have logarithmic z-scale!

Beta-Beat Measurement Error Sources I/II Statistical Phase Noise


- Statistical noise adds vectorial to the carrier signal:
 - excitation amplitude (carrier signal): A
 - noise in time (frequency) domain: $\sigma_{_{t}}\left(\sigma_{_{f}}\right)$
 - Equivalent number of turns: N $\sigma(\varphi) = \arcsin\left(\frac{\sigma_f}{A}\right) = \arcsin\left(\sqrt{\frac{2}{N}}\frac{\sigma_t}{A}\right)$ for small noise $\approx \sqrt{\frac{2}{N}}\frac{\sigma_t}{A}$

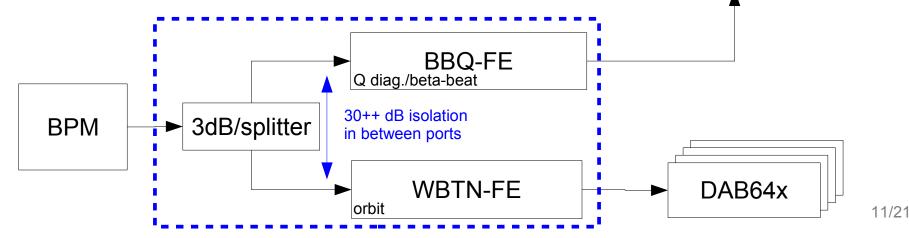
LHC Tune Diagnostics Instrumentation – Direct-Diode-Detection


- Basic principle: AC-coupled peak detector¹
 - intrinsically down samples beam spectra: GHz \rightarrow kHz ('Base-Band-Tune Meter')
 - Base-band operation: very high sensitivity < 10 nm/turn $\rightarrow \epsilon$ blow-up is a non-issue
 - AC-coupling removes common-mode \rightarrow only relative changes play a role
 - capacitance keeps the "memory" of the to be rejected signal
 - robust: no saturation, self-triggered, no gain changes to accommodate single vs. multiple bunches or low vs. high intensity beam

However: BBQ ≠ Beam Position Monitor

- Fundamentally different acq. techniques but yielding same 'phase-advance information)
- (Analogue: TF measurement using step generator and scope vs. network analyser)

- Sources usually depend on observation/excitation frequency
 - Systematic delays: $\Delta \varphi [deg] = 360^{\circ} \cdot \Delta \tau f$
 - Pick-up to acquisition system cable length (e.g. 100 m@ Q_{AC} =0.25 f_{rev}) – SPS: $\Delta \phi \approx 2^{\circ}$ LHC $\Delta \phi \approx 0.5^{\circ}$: $\Delta \beta / \beta_{svs} \approx 3-10\%$ (45° lattice)
 - However, is suppressed for relative beta-beat measurements
 - Low-frequency pre-processing and analogue front-end asymmetry (mostly HP/LP-filters \rightarrow µs-level group delays)
 - Delta 1010 analogue pre-filter: $\Delta \phi \approx 7^{\circ}$ (measured)
 - BBQ front-end: $\Delta \phi \approx 10^{\circ}$ (measured, here: only Chebychev stage shown)

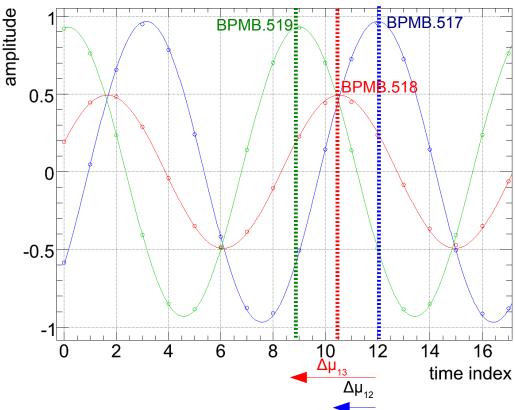

2010/11 Test Setup in the SPS and LHC

- KISS digital acquisition: HP Proliant 16", 1U + M-AUDIO Delta 1010
 - 8 analogue inputs/outputs, 16", 1U
 - frequency response: 20Hz-22kHz, +/-0.3dB
 - >100 dB dynamic range/S/N ratio
 - THD: 0.00072% (A/D), 0.00200% (D/A)
 - N.B. til-date: no single-event upsets despite being next to the primary B1 collimators

allows simple filtering and post-processing in audio domain

OD OD OD OD OD OD OD OD OD

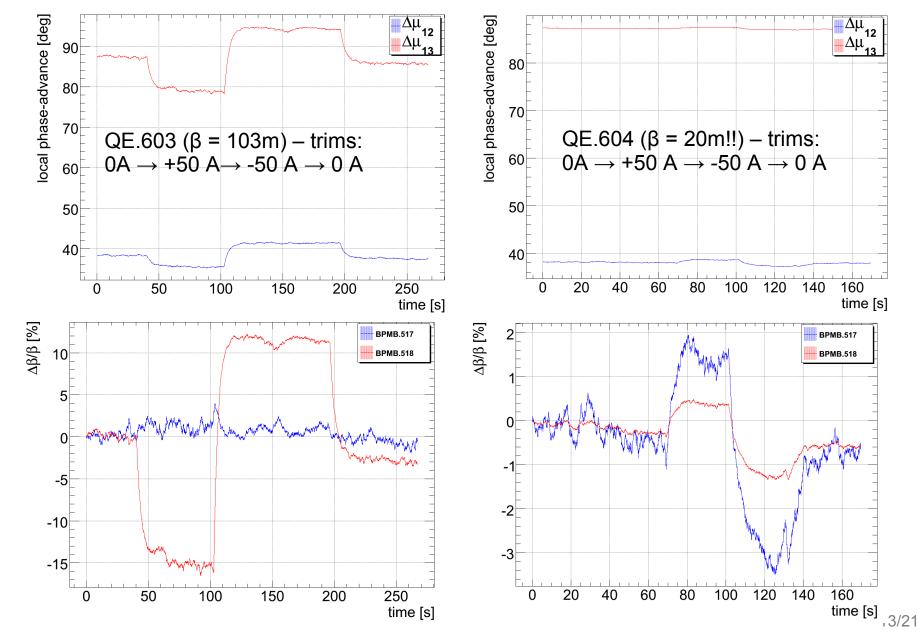
 Tests with beam in the SPS & LHC confirm that there is no obvious cross-talk in between the regular LHC WBTN (orbit) and the diode-based continuous beta-beat acquisition electronics.



Continuous LHC Beta-Beat Measurements, Ralph. Steinhagen@CERN.ch, 2011-03-08

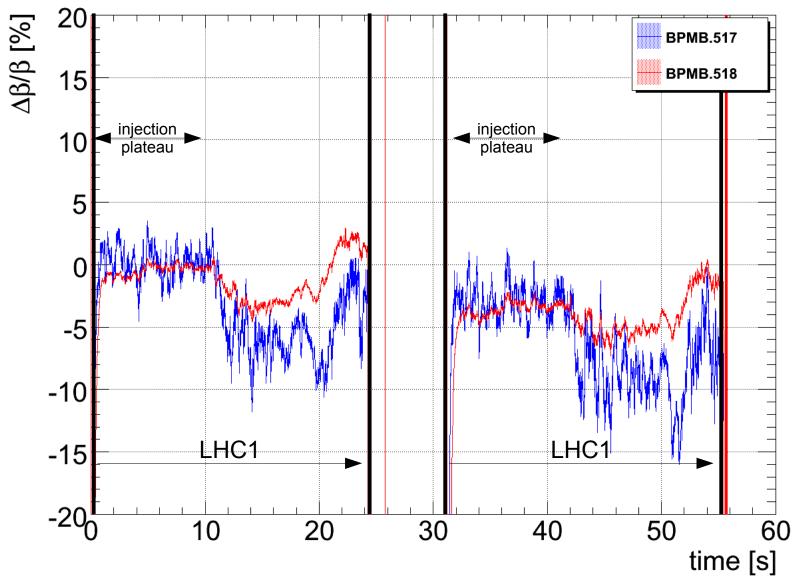
Example: Beta-Beat/LHC BPM Prototype System in the SPS-LSS5

Measurement (markers), sinusoidal fit (solid line):

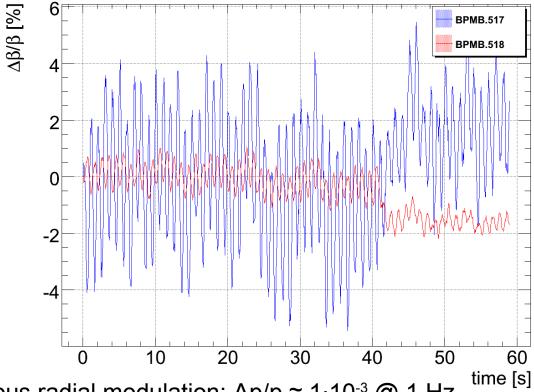


$$\frac{\Delta \beta_1}{\beta_1} = \frac{\cot(\Delta \mu_{12}^{meas.}) - \cot(\Delta \mu_{13}^{meas.})}{\cot(\Delta \mu_{12}^{theo.}) - \cot(\Delta \mu_{13}^{theo.})}$$
$$\frac{\Delta \beta_2}{\beta_2} = \frac{\cot(\Delta \mu_{12}^{meas.}) - \cot(\Delta \mu_{23}^{meas.})}{\cot(\Delta \mu_{12}^{theo.}) - \cot(\Delta \mu_{23}^{meas.})}$$
$$\frac{\Delta \beta_3}{\beta_3} = \frac{\cot(\Delta \mu_{23}^{meas.}) - \cot(\Delta \mu_{13}^{meas.})}{\cot(\Delta \mu_{23}^{theo.}) - \cot(\Delta \mu_{13}^{meas.})}$$

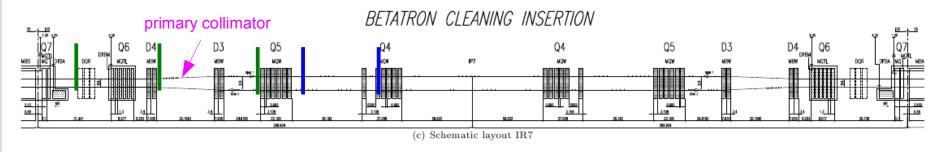
¹P.Castro, Luminosity and Betatron Function Measurement at [..] LEP, CERN SL/96-70 (BI)



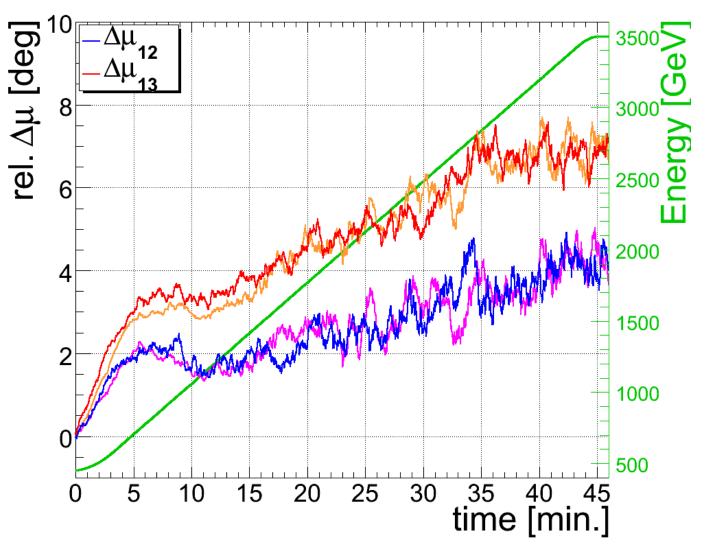
QE.603/QE.604 induced β-Phase-Advance Beating



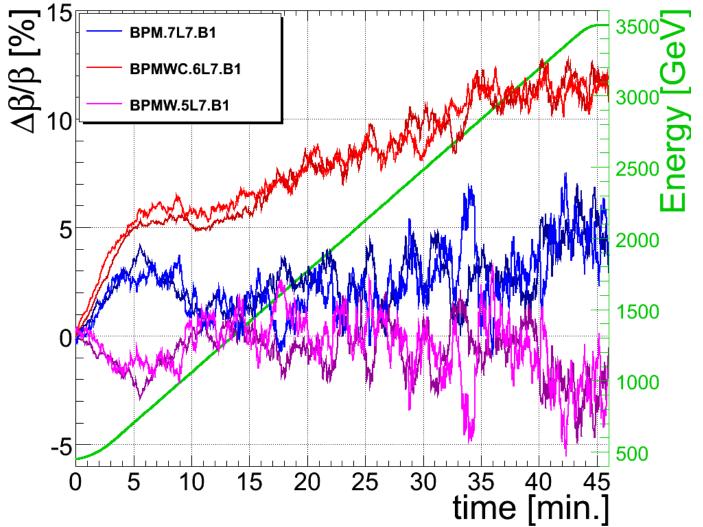
In between two coasts...


- System can be further exploited for fast and transparent measurements of physics affecting $\Delta\beta/\beta$ that earlier required significant amount of beam time
- Example: vertical off-momentum β-Beat:

- Continuous radial modulation: Δp/p ≈ 1·10⁻³ @ 1 Hz
- One full measurement data set every second!
- N.B. Step in phase \rightarrow off-centre horizontal orbit in lattice sextupoles

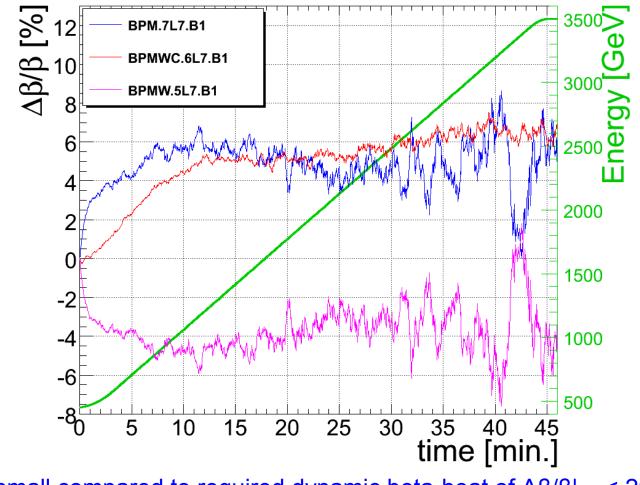

LHC Continuous Beta-Beat Measurements Setup

- Located in RR73, the minimum installation without pulling additional cables
- Pick-ups: BPM.7L7.B1 \rightarrow BPMWC.6L7.B1 \rightarrow BPMW.5L7.B1
 - phase-advance in between of Δµ≈ 45°
 - dual-plane \rightarrow 6 channels
- Present installation using 3dB-Splitters works fine for a few (<6-8) pick-up locations but does not scale well (costs) for massive deployment (dominated by HF cabling, connector, mechanics, etc...)
 - Re-used default BBQ front-ends (not optimised for phase stability)
 - Non-issue for relative beta-beat change measurements
 - Was/can be cross-calibrated (once) against standard BPMs



- Perfectly pre-cycled machine, off-resonance excitation, < µm excitation level
 - excellent phase resolution, reduces with energy (N.B. const. kick strength)

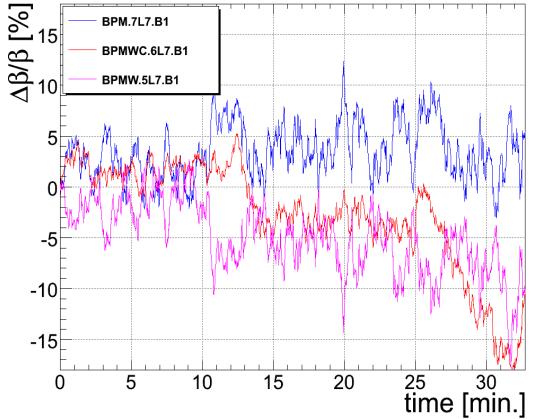
LHC Beta-Beat during the Energy Ramp II/III – Reconstructed Local Beta-Beat



- Excellent fill-to-fill reproducibility of about 1% provided machine underwent a standard magnetic pre-cycle and no quenches have occurred.
 - Complemented also by Rogelio's reproducibility assessment

LHC Beta-Beat during the Energy Ramp III/III – Evolution during a "less-perfect" Ramp

- 3/8 main dipole circuits being pre-cycled to 2 kA instead of the default 6 kA.
- Percent-level correction of the transfer function of one of the warm quadrupole magnet in the vicinity of the test setup



Still, small compared to required dynamic beta-beat of $\Delta\beta/\beta|_{max}$ < 20%

LHC Beta-Beat during Squeeze

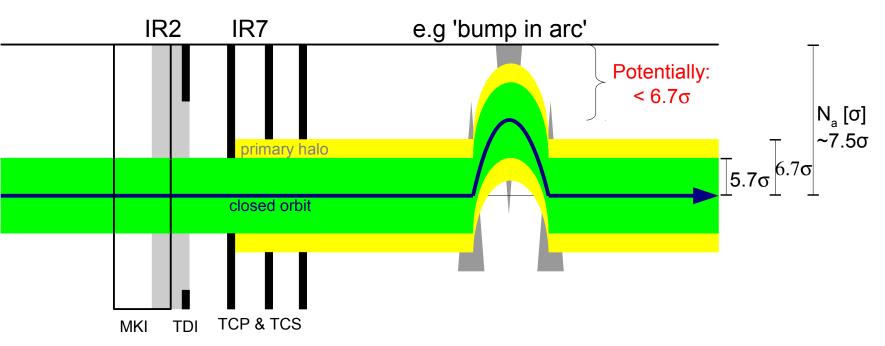
Squeezing from $\beta^* = 10 \text{ m} \rightarrow \beta^* = 2 \text{ m}$ in all four IPs

- Nodes at optics matching points & leakage of squeeze of about 5% in IR7
 For the time being considered as small and compatible with present collimation requirements for low-intensity beams in the LHC.
- N.B. Meas. much noisier due the reduced signal-to-noise ratio during the β*-squeeze of only 16 dB (reduced excitation strength at top energy + small bunch intensity)

Conclusions

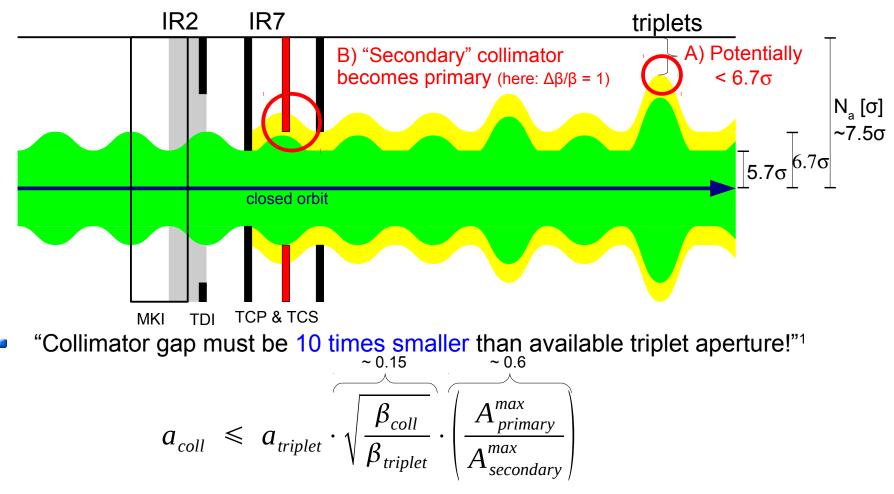
- The aim of the continuous beta-beat measurement studies at the LHC was to
 - provide a proof-of-feasibility for the measurement technique, and
 - to assess magnitude and time-scale of the LHC lattice changes.
- Continuous beta-beat measurement system could achieve a 1% resolution
 - only limited by the maximum off-resonance excitation power, and
 - for excitations being kept below a micro-meter
 - \rightarrow transparent for nominal LHC operation.
- 2010 measurements seem to confirm that fill-to-fill beta-beating is reproducible within 1% provided machine underwent a nominal pre-cycle
- Present SPS/LHC installation using 3dB-Splitters works fine for a few pick-up locations but does not scale well (costs) for massive deployment (dominated by HF cabling, connector, mechanics, etc...)
- If there is some interest/requirement: should and needs be specified as part of a future BPM system at an early stage, e.g. SPS MOPOS renovation & future LHC BPM upgrade

additional supporting slides


- Beta-Beat Sources
 - Quadrupole gradient and Momentum errors
 - Feed-down due to off-centre horizontal orbit in lattice sextupoles

Requirements: Brüning, Fartoukh, LHC Project Report 501

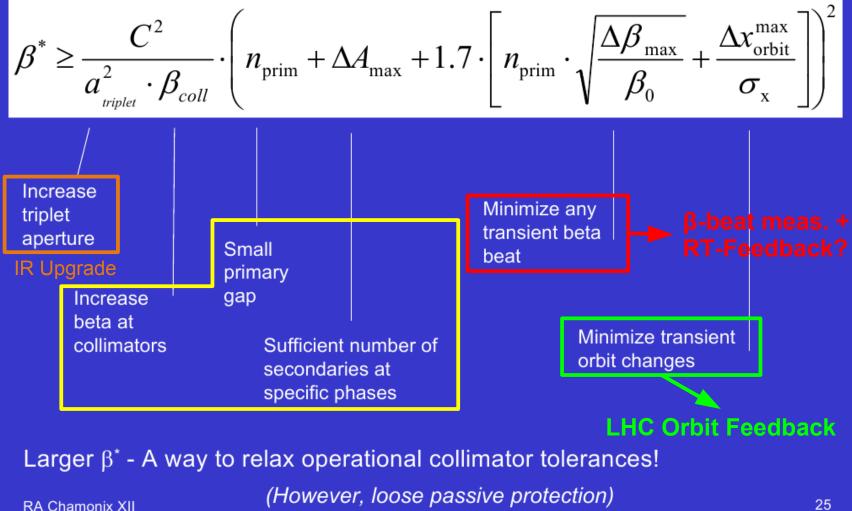
Peak hor. β -beating [%]	Mechanical aperture	14 / 15 (inj. / col.)
Peak vert. β -beating [%]	Mechanical aperture	16 / 19 (inj. / col.)
R.M.S. hor. β -beating [%]	Mechanical aperture	4.8 / 5.2 (inj. / col.)
R.M.S. vert. β -beating [%]	Mechanical aperture	5.5 / 6.6 (inj. / col.)


Combined failure: Local orbit bump and collimation efficiency (/kicker failure):

- To guarantee two stage cleaning efficiency/machine protection:
 - Local: TCP must be >0.7 σ closer than TCS w.r.t. the beam \rightarrow Orbit FB
 - Global: no other object (except TCP) closer to beam than TCS
- \rightarrow Orbit bumps may compromise function of machine protection/collimation \rightarrow tackled by LHC Orbit Feedback

Combined failure: beta-beat and collimation efficiency

A) β -Beat reduces required protection: $\Delta\beta/\beta \approx 20 \% \rightarrow 20\%$ tighter collimator settings


B) β-Beat reduces cleaning performance

¹ R. Assmann, "Collimation and Cleaning: Could this limit the LHC Performance?", Chamonix XII, 2003

If retraction is adjusted such to allow some maximum transient beta beat and orbit error, then **constraint of** β^* :

N.B. C = $\beta_{trip} \cdot \beta^*$

