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Motivation

A crab cavity model is implemented in madx and sixtrack for which
particles receive an RF (uniform in x,y) kick.
Several crab cavity designs show variations of the transverse kick
with the transverse position.
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Motivation

A conclusion from the CC-10 workshop, is that crab cavity designs
need a specification in terms of field quality, defined as the
deviations from a pure RF dipole kick.

One possibility (among others) is to define the specifications by
including a more realistic crab cavity model in sixtrack in order to
observe the impact on long term simulations. Also if deviations are
large, they may distort the luminous region for very low beta*.

A symplectic integrator for realistic RF cavities is proposed. It
relies on the same approximations that justify the use of the wake
field formalism. The simplified approach allows to describe the
field of cavity by few coefficients that can be found from numerical
simulations.



Assumptions
To compute the effect of an e-m fields on a relativistic particle, we
assume two main approximations:
I rigid bunch approximation: the particle trajectory is not affected
by the field, only momenta are affected by a kick at the end of the
cavity. It is equivalent to a first order drift kick symplectic
integrator.
I axial approximation: the trajectory is a straight line parallel to z,
that is the motion does not depend on px, py, δ and Bs. 1.
Under this approximation the kick can be written as:

∆~p(x, y, z) =

∫ ∞
−∞

~F (x, y, βct− z, t)dt

where

~F (x, y, s, t) = q
[
~E(x, y, s, t) + βcŝ× ~B(x, y, s, t)

]
1As remarked by F. Zimmermann, a para-axial approximation would keep the

linear dependence on px, py, δ (e.g. solenoid). To be noted that Bs is present
only in TE modes, many fringe fields are neglected for the LHC.



Panofsky-Wenzel theorem
Using Maxwell equations:

∇ · ~F =
qρ

ε0γ2
− qβ

c

∂Es

∂t
∇× ~F = −q

(
∂

∂t
+ βc

∂

∂s

)
~B

Performing the integral we get:

∇×∆~p(x, y, z) = −q ~B(x, y, s = z + βct, t)
∣∣∞
t=−∞ → 0

equivalent to

∂

∂z
∆~p⊥ = ∇⊥∆ps

∂∆px
∂y

=
∂∆py
∂x

and

∇ ·∆~p(x, y, z) = β
∂

∂z
∆ps →

∂

∂z
∆ps

equivalent to
∂∆px
∂x

+
∂∆py
∂y

= 0



Cauchy-Riemann equations

If u(x, y) and v(x, y) are continuous and differentiable and if

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

or defining ∇⊥ = ( ∂
∂x ,

∂
∂y ) and ~f = (u,−v)

∇2
⊥
~f = 0

then
f(z = x+ iy) = u(x, y) + iv(x, y) =

∑
n

cnz
n



Kick Hamiltonian
It can be demonstrated in absence of sources or β = 1
(Panosfky-Wenzel theorem) that:

∇×∆~p(x, y, z) = 0 ∇⊥ ·∆~p⊥(x, y, z) = 0

It follows that

∇2
⊥~p⊥(x, y, z) = 0

therefore the kick can be derived by the Hamiltonian2

H = −<

[ ∞∑
n=0

Wn(z)(x+ iy)n

]
∆~p(x, y, z) = −∇H(x, y, z)

2For magnets

Wn(z) =
Bn + iAn

nrn−1
0

By + iBx =
∑
n=1

(Bn + iAn)

(
x+ iy

r0

)n−1



RF cavity case

Since a RF cavity is excited by only one single frequency ω in
phase with the synchronous particle:
I z is the delay w.r.t the synchronous particle,
IWn(z) are periodic.
If ∆p⊥(x, y, z) is separable for Wn(z) follows:

3 Wn(z) = (Bn + IAn) cos(ωz/c+ φ)

otherwise

Wn(z) = Bn cos(ωz/c+ φn) + iAn sin(ωz/c+ ψn)

In all cases, the coefficients up to the desired order for a real cavity
can be computed from e-m simulations evaluating the transverse
voltage for a discrete set of (x, y, z).

3Already implemented in PTC by E. Forest but not avaialble in madx



Validate the approach

This approach can be validated by two distinct numerical
experiments.

To validate the multiple expansion: find the coefficients up to
some order using one set of field values (computed and analytical)
and check that the expansion is sufficient to fit the values.

To validate the beam dynamics: simulate the particle motion
through a cavity by using a detailed field map and by the multipole
expansion kick. Repeat the exercise with another element class like
a bending magnet or a quadrupole. Compare the level of
approximation in the two cases and verify they offer consistent
performance.



For improved accuracy

Probably higher order integrators could be found to keep at least
to leading order of the dependence px, py, δ, Bs using the same
strategy used for the fringe fields 4.
The recipe would be: include the integrated potential in the full
Hamiltonian. Expand the square root of the Hamiltonian to leading
orders. Use Yoshida-like integrators splitting all the integrable parts
and recombine them with appropriate coefficients using the BCH
theorem to minimize the deviations from the original Hamiltonian.

4See E. Forest, Beam Dynamics
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