
La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

BE Beams
Department

Methodical Accelerator Design
Project Overview

Laurent Deniau
CERN-BE/ABP

31th May 2011

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Preliminaries

2

๏ Education (not a physicist)

➡ engineer in computer science (≠ IT) and signal processing (1992)

➡ master (DEA) in signal processing and sensors (1992)

➡ PhD in signal and image processing (1997)

๏ Joined LHC-MTA in Feb 1997 (➭ AT-MTM ➭ AT-MEI ➭ TE-MSC)

➡ magnetic measurements

➡ software for analyzing measurements of LHC magnets (servers, web)
➡ modeling superconducting magnets behaviors for LHC operation

➡ Field Description for LHC (FiDeL, scientific secretary 2004-2011)

๏ Joined BE-ABP in May 2011

➡ new custodian of MAD-X (50%)

‣ support and evolution (midterm & longterm) of MAD-X

➡ beam dynamic physics (50%)

‣ must learn first, improve MAD-X physics, participate to accelerator design

‣ no knowledge of beam dynamics, Hamiltonian mechanics or symplectic geometry!

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

3

Part I
The Present

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Project Overview

๏ MAD-8 (80ʼs - 90ʼs)

➡ world-wide tool for accelerator design in the 90ʼs (became a “standard”)

➡ 4D only, but very flexible and very fast for users

➡ old style of programming (very low level, no abstraction)

➡ somehow limited physics (e.g. no advanced topology)

๏ MAD-9 (mid of 90ʼs - 00ʼs)

➡ complete redesign and rewrite from scratch (organized as a library)
➡ flexible and consistent (new scripting language), extensible, well structured, but slow

➡ problem with the Lie Algebra approach (difficulty to compose maps)

๏ MAD-X (mid of 90ʼs - today)

➡ includes a subset of MAD-8

‣ same advantages (fast, flexible) but not extensible (~frozen) and not robust (buggy)

➡ includes PTC-FPP

‣ handle 6D and non-linearities correctly (large δp & β), compose maps ~arbitrarily

‣ needed by most recent studies & future projects (e.g. PS, CLIC, LHC-HL)

➡ mix of technologies (painful to maintain) 4

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

MAD-X Typical Uses

๏ Batch mode (machine simulation)

➡ send a job, wait for results

➡ layout, optics, twiss, matching, response matrix, ...

๏ Direct mode (physics on top of machine simulation)

➡ use MAD-X as part of a more complex framework (e.g. Python or Mathematica scripts)

➡ run MAD-X directly for simulations (as for batch mode)

➡ iterative process for complex analysis (e.g. optimization, inverse problem)
๏ Interactive mode (machine design)

➡ use MAD-X as a shell, load data & scripts, typewrite commands, etc...

➡ exploration of parameters space, manual optimization, advanced uses

‣ takes time to setup workspace & studies

‣ unexpected quit results in users waste of time and frustration

5

The presence of many bugs weakens the users confidence
Syndrome of “the hidden part of the iceberg”

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Known Pending Bugs

๏ This list exclude parser bugs!

๏ Memory corruption in Aperture module

➡ well located, should be solvable

๏ Aperture followed by Survey command

➡ observable: side effects on the layout, introduce deflections at some magnets

➡ location: probably in the Aperture module

➡ MAD-X 5 only
๏ Portability problem leading to crash or incomplete output

➡ observable: DA becomes unstable, MAD stops with Fortran severe error, invalid results

➡ location: PTC_TWISS (?), not identified, no idea where to start

➡ differences between MAD-X version 4 and 5 and Windows vs Unix

‣ maybe related to Fortran compiler, but certainly not only

6

MAD-X is not equipped for
tracking bugs and code validation

Syndrome of “valid output = validated code = no bug”

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

MAD-X Schematic Components

๏ Medium size project (lines of code: total 167k, 36k in C, 123k in F90)

๏ MAD-X core is overly complicated (very high coupling, very low cohesion)

๏ PTC represents 3/4 of the code, it is limited by MAD-X core (information transfer)

๏ Some MAD-X modules are not yet in PTC modules

๏ Collaboration between C and F90 is fragile (e.g. I/O)

7

MAD-X CORE
Main + Parser + Layout

C, F90

M
A

D
-X

 M
od

ul
es

C

P
TC

 M
od

ul
es

F9
0

P
TC

 C
or

e
FP

P
&

 D
A

F9
0,

 C
/C

++

M
A

D
-X

 M
od

ul
es

F9
0

P
TC

 S
pe

ci
al

s
F9

0

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Code Static Analysis

๏ C functions by number of effective lines of code

๏ C functions by cyclomatic complexity (control flow)

8

25 lines (max recommended)

351 functions

complexity 10 (max recommended)

191 functions

Lack of tools to analyze Fortran
Not necessarily needed

as soon as design and abstraction are good

Extremely powerful tools available
at CERN for C/C++ (e.g. Coverity)

80000+ violations of “coding rules”

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Poor Designs Symptoms

๏ Rigidity

➡ The software is difficult to change, even in simple ways

๏ Fragility

➡ The software breaks in many places every time it is changed

๏ Immobility

➡ The software is hard to extend and requires hacks to evolve

๏ Redundancy
➡ The software fails to reuse/be reused by others, leading to duplications

๏ Viscosity

➡ The development environment fails to build and test the software efficiently

9

Do these terms make sense to you?

MAD-X core suffers from the lack of design and refactoring
Syndrome of “it works, don’t touch it!”

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Coding Design Rules (very simplified)

๏ Keep Coupling Low (Dependency of Knowledge)

➡ enhance readability and maintainability

➡ importance of interface

➡ very high in MAD-X core

๏ Keep Cohesion High (Locality of Knowledge)

➡ enhance reliability, reusability and understandability
➡ importance of encapsulation

➡ very low in MAD-X core

10

Better in Fortran code

Show the importance of understanding
the programming languages

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

MAD-X like Projects & Parsers

๏ BMAD (stands for “Better MAD”) & TAO (Tool for Accelerator Optics)

➡ much like MAD-X & PTC-FPP, very active, very complete (ahead of MAD-X?)

➡ compatible with PTC (?)

๏ LEGO (library similar to PTC-FPP)

➡ Symplectic integrators for integration of the Hamiltonian

➡ Differential algebra for Taylor map up to arbitrary order

➡ Optics analysis for the linear and non-linear cases
➡ Monte Carlo simulation for synchrotron radiation

๏ GMAD parser (from BDSim, an extension of GEANT4)

➡ clean & extensible parser, fully compatible (?)

๏ Universal Accelerator Parser/Accelerator-ML Project (ANTLR-based)

๏ COMPASS SciDAC-2

➡ very large all-in-one project for multi-physics accelerator design

➡ only on paper?

๏ MAPA (GUI), Merlin-Pt (library), Placet (linac), ...
11

I haven’t check the details...

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Myths and Legends

12

๏ Speed is the main concern, the code must work, etc...

➡ Do it right, then do it simple, then do it fast, is the only way to obtain good results

๏ Project XXX failed because of C++

➡ failure of a project has to do with project management

➡ failure of the physics has to do with the understanding of the physics

➡ programming languages are tools with features and expressivity which should mainly
help to abstract interfaces and implementations and save human resources globally

๏ Fortran is fast, C++ is slow, C is error-prone
➡ C, C++ and Fortran have about the same speed and accuracy

‣ often share the same optimizer and code generator (e.g. Intel & GCC compilers)

➡ C is very flexible but requires more discipline to write clean & readable code

๏ C++ is slow and not suitable for scientific computing

➡ most recent scientific libraries are written in C/C++, including in the HEP community

‣ e.g. linear algebra, differential algebra, tensors algebra, symbolic manipulation

➡ multi-paradigms and expressivity of C++ are world-wide appreciated for SC

➡ C++ allows to code at higher level of abstraction without speed loss

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

13

Part II
The Future

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Can We Do Something?

14

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Motivation for Changes

15

๏ Reduce the size and complexity of the code

➡ improve the robustness of the code (policy of zero pending bug)

➡ make the physics readable and accessible (as much as possible)

➡ attract motivated (young) physicists (“it works” syndrome)

➡ restore the confidence of users (“iceberg” syndrome)

๏ Reduce drastically the resource consumed by maintenance and support (< 0.01 pmy)

➡ presently debugging is non-deterministic (may be endless)
๏ Improve the extensibility for future

➡ parser and layout limitations and complexity (the parser is not ... a parser)

➡ new modules for new physics, not for new projects (e.g. PTC specific cases)

➡ stem external MAD-like rewrite, propose collaboration on sound code

๏ Add new physics modules (consensus around “PTC does it right”)

➡ PTC everywhere with optimized specializations for simpler cases

๏ Focus on the essential (better FPP)

➡ FPP as a white box (where I can help the most!)

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Motivation for Closing

16

๏ Stop the resource leakage consumed by maintenance and support

➡ solve pending bugs (may take long time or introduce new bugs)

➡ close the modules, freeze the code

➡ use as-is, provide limited support

๏ Start a “new” project on top of PTC-FPP (aka MAD-P)

➡ not starting from scratch!
➡ dealing only with working physics (PTC approach)

‣ with optimized specializations for specific cases

➡ quickly extensible to other project (≠ adapt the existing)

‣ PTC special cases

➡ focus on the mathematics (FPP) and the physics (PTC)

‣ bottom-top approach

➡ save resources, simplify the management, motivating

➡ open new possibilities

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Orientation & Strategy

17

Improvement Concept
Evolution

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

๏ Rewrite from scratch

➡ fun (matter!), simpler, risky (i.e. risk to never converge)

➡ long period without improvement for the end user

➡ hard to combine with support of previous releases with limited resources

๏ Improve the situation

➡ modify smoothly the existing and ensure working steps (i.e. regression tests)

➡ must be transparent to the end user (e.g. only fully validated substitution)
➡ must stay backward compatible (e.g. scripts)

➡ much less risky for the current project

‣ the existing remains the main project

‣ we can move backward at any moment

‣ moves depend on the available resources

‣ danger of priority inversion (i.e. endless support and no evolution)

➡ much more complicated

‣ requires a strategy (e.g. substitution principle)
18

Revolution Strategy

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Proposed Strategy (works for changes and closing)

๏ Improve the communication through open mailing lists (e-groups)

➡ better information sharing and dispatch, history of ideas and actions

๏ Improve the build system

➡ protect developers and users against regressions

➡ save resource for future maintenance

๏ Improve the separation of concern

➡ close the modules (i.e. enforce encapsulation and interface)
๏ Provide an I/O module

➡ ensure clean and robust coordination of C and Fortran I/O

➡ allow better logger and pipe usages (i.e. direct mode users)

๏ Provide an extensible parser and layout (as a new module, see later example)

➡ better separation between physical objects (layout) and math objects (properties, maps)

➡ safe layout, invariants constraint, state machine for updates

๏ Make FPP comprehensible

➡ better reuse of mathematical structures and algorithms

➡ improve expressivity and knowledge of FPP 19

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Proposed e-groups

๏ Public mailing lists (e-group, all archived)

➡ hep-project-madx

‣ very low bandwidth, only for important information (e.g. releases, reports)

➡ hep-project-madx-usr

‣ low bandwidth, only for users related topics (e.g. bugs, features)

➡ hep-project-madx-dev

‣ medium bandwidth, only for developers related topics (e.g. bugs, features)
➡ hep-project-madx-src

‣ medium bandwidth, source code modifications (automatic emails from svn commit)

20

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Build System

๏ Build process

➡ cross-platform (Linux, MacOS X, Windows), automatic and simple to use

➡ The CMAKE suite (~standard @CERN)

‣ build & regression tests & dashboard (nightly)

‣ user tests (weekly)

‣ official releases (when significant)

๏ Bug tracking system
➡ could be replaced temporally by e-group

➡ could be of interest in some future

‣ bugs classification

‣ bugs correlations

‣ bugs assignations

‣ bugs history

‣ widely used at CERN by large team

21

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

Parser & Layout Substitution Example (changes only)

1. Retrieve an existing parser compliant with MAD-X scripting language (or write one)

2. Transform it to a new “hidden” MAD-X module with activation option

3. Tests compliance with the existing parser and layout (e.g. parse twice) (state compatibility)

4. Provide common interfaces to all modules for old and new layout

5. Provide synchronization with the existing layout (e.g. update twice)

6. Update modules to common interface (one by one) (interface compatibility)

7. Check modules actions and invariants (one by one)

8. Make the old layout read-only and activate the new layout

9. Check for invariants and remaining variants

10. Disable the old layout and check for consistency (functional compatibility)

11. Test deeply on many many cases!

12. Make the new parser and new layout the default (long after last step)

13. Call for a drink

22

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

BE Beams
Department

La
ur

en
t D

en
ia

u,
 C

E
R

N
 B

E
/A

B
P,

 1
21

1
G

en
ev

a
23

, l
au

re
nt

.d
en

ia
u@

ce
rn

.c
h

23

Questions, proposals, help
are welcome

mailto:laurent.deniau@cern.ch
mailto:laurent.deniau@cern.ch

