First study of high- β^* optics for ALICE

Pascal Dominik Hermes

CERN, Geneva

10.10.2011

2 90 m Optics

- Matching
- Optics
- Aperture
- Tune compensation
- Detection
- Un-Squeeze

3 Conclusions

Introduction - High- β optics

Objectives

- Un-squeezed beam with small divergence at IP
- Inelastic scattering at very low angles
- Detection via roman pots left and right of IP

Challenges

- $\bullet~{\rm Find}~{\rm high}{-}\beta~{\rm optics}$
 - Uncritical aperture
 - Respect quadrupole limitations
 - Phase shift of $\frac{\pi}{2}$ between IP and RP
- Find detector positions
- Methods for tune compensation
- Un-Squeeze

Already performed at IR1 and IR5

Matching

- Matching by MAD-X (Madtomma)
- Flat machine
- 7 TeV
- Also use quadrupoles of the DS
- Check several triplet quadrupole strengths

- External tune compensation required
- No constraint on $\mu \rightarrow$ No result
- Define final $\mu \rightarrow$ systematical scan
- Choose solution by β , symmetry, tune, phase shift to RP
- Best results ¹ with triplet quads at 0.00754m⁻²
- Refine by applying constraints on β

1. 10 m optics : 0.00889 TOTEM 90 m optics : 0.00764

90 m Optics - Beam 1

Beam 1 - Quadrupole strengths

- Relative quadrupole strengths
- Respect polarity
- Max. Value 87%
- Mean Value 61.2%

Optics

Beam 1 - Comparison with TOTEM

 $KQX.L2 = 7.5448 \cdot 10^{-3} m^{-2} / KQX.R5 = 7.6448 \cdot 10^{-3} m^{-2}$

90 m Optics - Beam 2

Beam 2 - Quadrupole strengths

- Relative quadrupole strengths
- Respect polarity
- Max. Value 95.9%
- Mean Value 64.2%

Beam 2 - Comparison with TOTEM

 $KQX.L2 = 7.5448 \cdot 10^{-3} m^{-2} / \ KQX.R5 = 7.6448 \cdot 10^{-3} m^{-2}$

Aperture Beam 1

90 m Optics

Aperture

Aperture Beam 1 - Comparison with TOTEM

Aperture Beam 2

90 m Optics Aperture

Aperture Beam 2 - Comparison with TOTEM

Tune compensation

- Methods for tune compensation proposed by H. Burkhardt
- Compensation in main arc quadrupoles (small beta beating)
- Rematching of IR4 (some beta beating, maximum compensation of 0.2)
- Studies on the feasibility of simultaneous high- β performance in IR1, IR2, IR5

- Detection via roman pots or Hamburg pipes
- Parallel to point focusing
 - \rightarrow Betatron phase shift of $\frac{\pi}{2}$ between IP and RPs
- Small momentum transfers
 - \rightarrow Possibly large distance between IP and RPs
- Detector positions not yet clear

Detectors

Figure 3.8: The left side of the matching section in IR2.

Detection between Q5 and Q6 left and right of IP

	Beam 1	Beam 2
Element	TCLIB.6R2.B1	BPM.6L2.B2
Distance	227.6	236.8
$\Delta \mu_x$	0.50172	0.485825
$\Delta \mu_y$	0.52873	0.494827

- Exact positions need to be found (respect existing hardware : vacuum, electrics,...)
- Optics must be rematched to satisfy constraint

Un-Squeeze

- Smooth un-squeeze
- Intermediate steps needed
- Check the same steps as for TOTEM
- Linear approximation between steps
- Check apertures

Conclusions

Results

- First high- β optics found
- Quadrupoles ok
- Phase advance in the correct order of magnitude
- Aperture ok

Remaining tasks

- Refine the existing optics
- Match betatron phase constraint
- Find detector posistions
- Find un-squeeze

Conclusions

Acknowledgements

- John M. Jowett
- Helmut Burkhardt, Hannes Wessels, Rainer Schicker