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Schmiuser & Rossbach - basic course
on accelerator optics, CAS 1992

The length of modern accelerator magnets is usually much larger than their bore radius. The end
field contribution is then rather small and the magnetic field has to a good approximation only
transverse components. (This is of course not the case for the large solenoids in the experimental

areas which need a special treatment. The same applies for wigglers and undulators which are
special magnets for generating synchrotron radiation.)

For two—dimensional fields one can apply the theory of analytic functions. From
divB =0
it follows that a vector potential A exists such that

B =rotA (2.14)

Because of the transversality of the field, the vector Eotentia.l has onlz a_component A, in the
longitudinal direction s. In vacuum, for example inside the beam pipe, we have furthermore

rotB =0
This implies that B can also be written as the gradient of a scalar potential V:

B = —gradV (2.15)

crab cavity fields are neither purely transverse nor static



example crab cavity
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Cell Arrangement of mT-mode Pill Box Cauvity.
The vertical blue lines are ends of full (A/2) cells and
the vertical red lines are those of half (A/4) cells.

Kwang-Je Kim, Trajectories through deflecting cavities, ANL-AAI-TN-2007-01, May 2007



Hybrid electromagnetic cavity mode
B. W. Montague, “Particle Separation at High Energies. Il. Radiofrequency
Separation”, Progress in Nuclear Technigues and Instrumentation, Vol. lll, North

Holland, 1968.
Approximate simple expression for the electromagnetic field taking into account

the non-vanishing beam-pipe radius p:

E, :5%(,02 + X% — yz)sin ks cos wt,

k ]
Ey =& E Xy sin ks cos wt, transverse fields not uniform!

E, =& x cos ks cos wt,

cB, = 6‘% Xy cos ks sin wt,
2 2002 ;2
cB, =—€i ((k,z) —1+ a (X4 Y )jcos ks sin wt,

cB,=-& y sin ks sin wt. longitudinal field not zero!
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Microwave studio results are very close to HEM fields up to r=p

E(V/m) vs. z (mm) at x=5mm and y=5mm B(tesla) vs. z (mm) at x=bmm and y=5mm

i 0.015

Electric and magnetic field components computed from Microwave Studio for

6 13 cell cavity with a beam hole.

Kwang-Je Kim, Trajectories through deflecting cavities, ANL-AAI-TN-2007-01, May 2007



neglecting quadratic terms,
trajectory equations for a HEM cavity are:

~d’x G, . 1. .
) _?{5 sin (2ks—8) — > [sin (2ks— @) —sin 6’]}

‘3_(85 . %{kx [cos (2ks—6) + cos 8]+ X' (1— &) [sin (2ks—6) —sin 4]}

where KkK=w/ic=2n/, 60=Kz,

Gzé, gz(k_pjz, ¢p=KkL/2
E 2
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solution for Xx:

Xo =X + kg Z (¢—(.§ —%)sin 2¢)

/
X2:X1+ LXl +ﬁ

G

(g —%j(wcos 26 — sin2¢)

¢—(§—%)sin 24

constant offset in x
which

does not appear

in case of a multipole
description

Kwang-Je Kim, Trajectories through deflecting cavities, ANL-AAI-TN-2007-01, May 2007



generalized multipoles for a general static B field

Wlth dlpOle geOmetry: Y. Papaphilippou, J. Wei, R. Talman,
EPAC2000 & PRE 67, 046502, 2003
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Taking the field expansion up to leading order, we get:
B, = bxy + O(4)

~ —bz(a: —y?) +0(4) (2)

terms which differ from
. regular multipoles
where by represents a sextupole field component allowed

by the symmetry of the “dipole” magnet (for an ideally de-

signed magnet by = 0) and O(3) and O(4) contain all the

allowed terms of higher orders.




generalized "multipole” expression for crab
cavities? (E+B field, harmonic time dependence)

X B Lorentz force

<l

F=eE+e

. _ 04
F=e(—V<D —)+evx(V><A)

0
_AA — ‘;’_jﬁ’ =0 vector Helmholtz equation
V-A-— iﬁ d=0 Lorentz condition (gauge)
c2
—6(6 : K) = —AA -V X (6 X X) vector identity

2
ﬁ=e(_ﬁ%(ﬁ-z)+iwz)+eax(ﬁx@



solution of the scalar Helmholtz equation in (r,6,z)

we need to solve this equation for all
d d . 3 components of vector potential
.ilr F+k F= I:} with appropriate symmetry &
boundary conditions
F(r.0.9=R(OOOZ()
with Yannis?

& (= C,, cos (m#)+ D, sin (m ).

Riry=A,,, J (r \,/ nt o+ kK ] + B, ¥ (r' \f ne o+ ke ]

general solution:

Filr. @ )= i i [r’i,.,,, . (r' \l’ K +n ] + B, ¥ (r' \l’ K+ n ]‘

dp=Lh sr=Ib

% |G €08 (m 6) + Dy, sIn(m B)] (E, €77 + F, € 7).

from Wolfram MathWorld



preliminary conclusions

transverse multipole expansion misses
terms which are related to z-dependence and
terms which are related to time dependence

to rely on such expressions one must make sure
that the neglected terms are small

even the constant position offset may be significant;
so how about higher order terms?

generalized multipoles are known for a nonuniform
static magnetic field; even more generalized multipoles
might be derived for the case with time dependence



