

Positioning of dispersion suppressor collimators around IR2

John Jowett

Ultraperipheral processes in Pb-Pb collisions

BFPP1:
$$^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{81+} + \text{e}^+,$$
 $\sigma = 281 \text{ b}, \quad \delta = 0.01235$

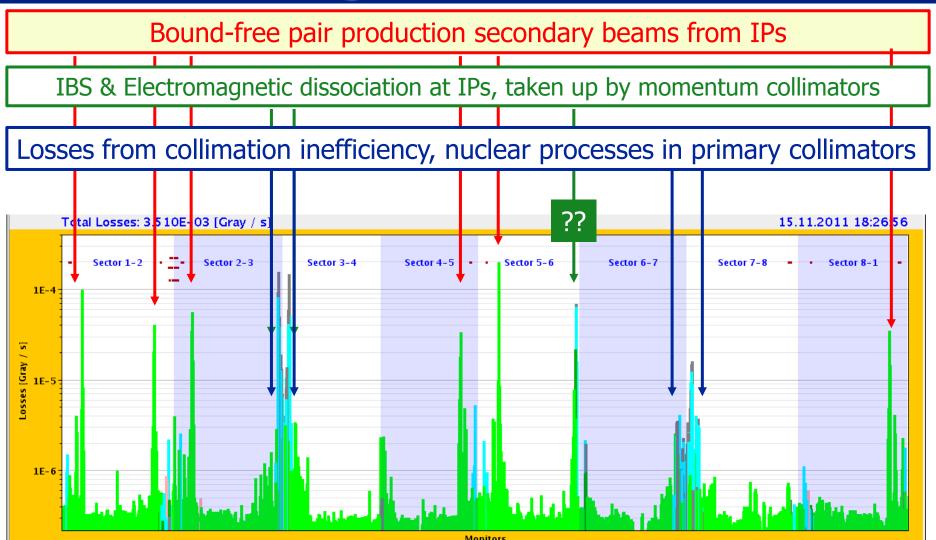
BFPP2: $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{80+} + 2\text{e}^+,$
 $\sigma = ?? \ b, \quad \delta = 0.02500$

EMD1: $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{207}\text{Pb}^{82+} + \text{n},$
 $\sigma = 96 \ b, \quad \delta = -0.00485$

EMD2: $^{208}\text{Pb}^{82+} + ^{208}\text{Pb}^{82+} \longrightarrow ^{208}\text{Pb}^{82+} + ^{206}\text{Pb}^{82+} + 2\text{n},$
 $\sigma = 29 \ b, \quad \delta = -0.00970$

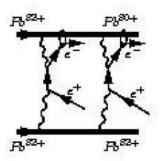
Each of these makes a secondary beam emerging from the IP with rigidity change $\delta = \frac{1 + \Delta m / m_{Pb}}{1 + \Delta Q / Q} - 1$

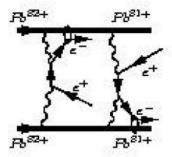
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 071002 (2009)

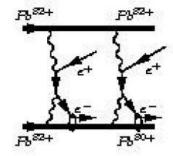

Beam losses from ultraperipheral nuclear collisions between ²⁰⁸Pb⁸²⁺ ions in the Large Hadron Collider and their alleviation

R. Bruce, ^{1,*} D. Bocian, ^{2,1,†} S. Gilardoni, ¹ and J. M. Jowett ¹

CERN, Geneva, Switzerland


Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA (Received 13 May 2009; published 29 July 2009)


Losses during Pb-Pb Collisions in 2011


Multiple pair production

Multiple pair production (uncorrelated)

Pb (81+) Pb (81+)

$$Pb(82+) Pb(80+)$$

$$\sigma(80+,82+) > 6 \text{ mb}$$

ALICE@upgrade:

rate(min bias) = 50 kHz

rate Pb(81+) = 50 kHz \times (260/7) ~ 1.8 MHz (either side)

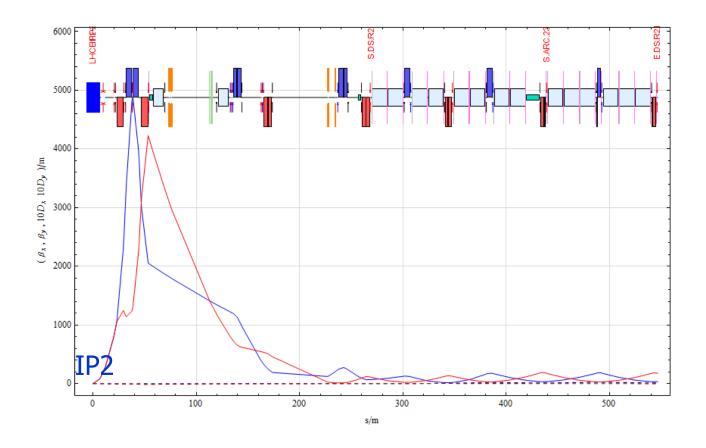
rate Pb(80+) > 50 kHz \times (0.006/7) ~ 42 Hz (either side)

R. Schicker

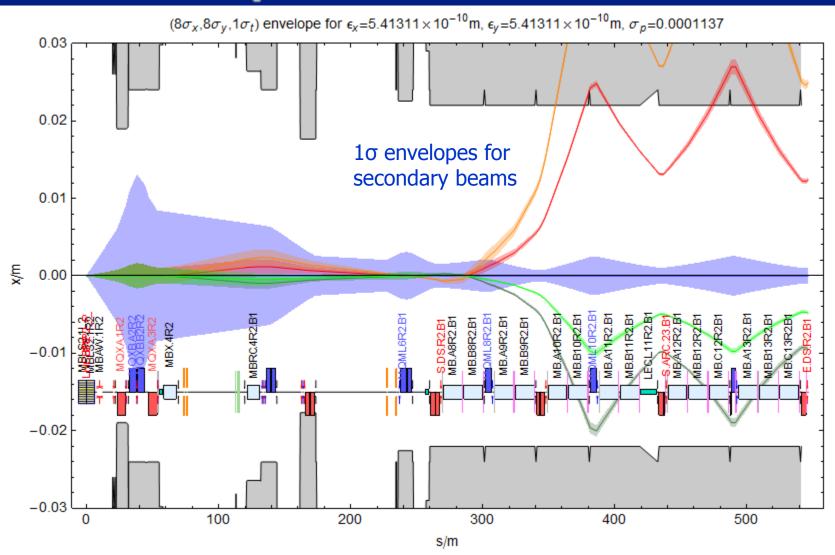
CERN, march 16, 2012

2

Open issues:


- size beam spots Pb(81+) and Pb(80+) ?
- Feasibility of simultaneous measurement of Pb(81+) and Pb(80+) ?
- Gas based detector ?
- Feasibility of simultaneous measurement of Pb(82+, 207) ? (neutron emitted, other side of Pb(81+,208))

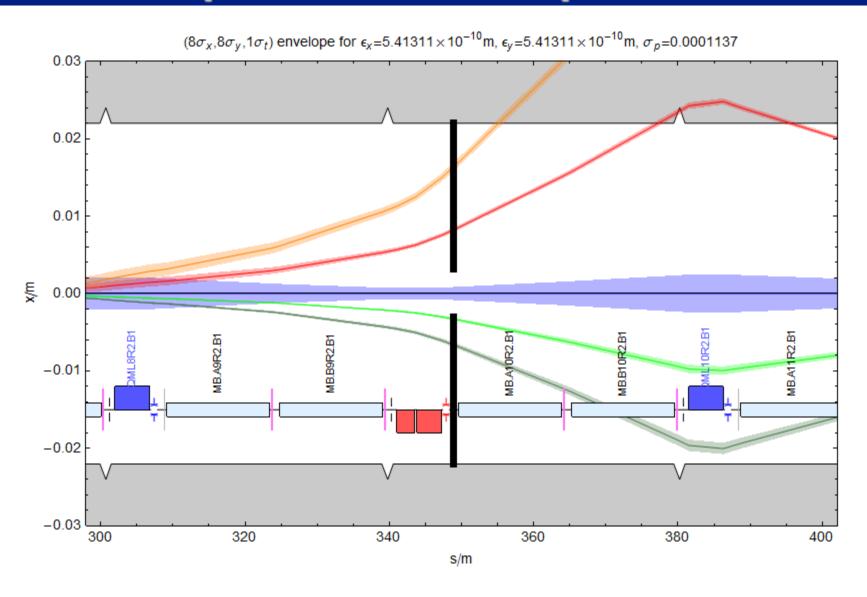
R. Schicker


CERN, march 16, 2012

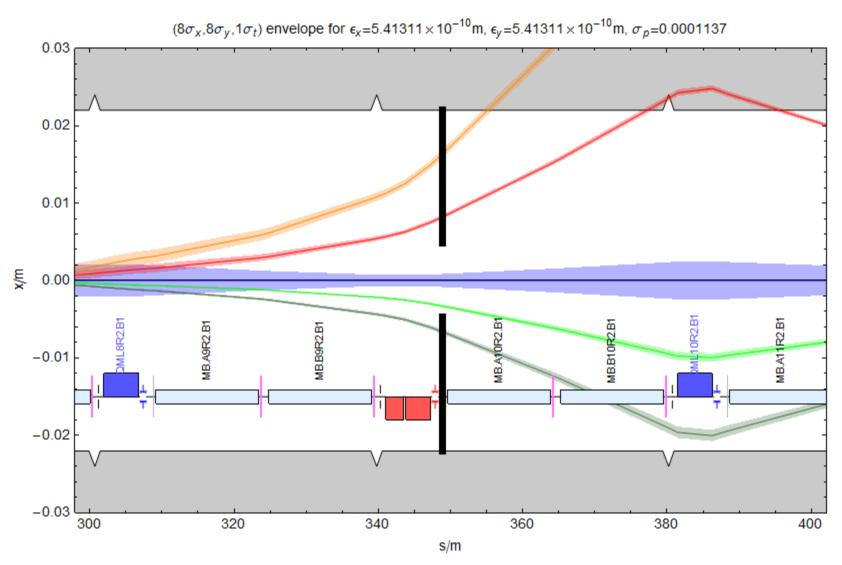
Parameters considered

 $E=6.5\,Z$ TeV $\beta^*=0.5$ m (Nominal optics for 2019) Half-crossing angle $p_{_{V}}=80~\mu rad$

Secondary beams from Beam 1 in IR2



Cannot separate BFPP and main beam in warm area (eg by Roman pots a la TOTEM).


CDF version

- http://cern.ch/jowett/IR2/BFPP/DSCollimatorBFPP.cdf
- You might need to install a browser plug-in:
 - http://www.wolfram.com/cdf-player/

Optimum collimator position

Open gap so EMD1 passes (to IR3)

Further opening or local bumps allow other selections.

ATLAS and CMS?

- ATLAS and CMS also take high-luminosity Pb-Pb
- The same problem of BFPP losses exists in the DSs around IP1 and IP5
 - Details of loss locations may be slightly different
 - Highest losses in 2011 were right of IP5
- Similar motivation to install DS collimators to avoid a peak luminosity limit from quenches and/or long-term radiation damage

Conclusions

- DS collimator for BFPP protection must be near
 Q9 in IR2
 - Unless perhaps we insert bumps?
- Detectors for BFPP ions must be located in cold section
 - Incorporate in DS collimators?
- Collimator gap can control selection of ultraperipheral processes to control losses in IR3 and for physics purposes (possibly)