High- $\boldsymbol{\beta}$ studies

Team

Jörg Wenninger, Stefano Redaelli, Matteo Camillocci, Laurette Ponce / setup, hypercycle
Rogelio Tomas, Tobias Persson, Piotr Skowronski, Ewen Maclean, Yngve Levinsen, Simon White (Optics measurements and correction)

Sophie Cavalier, Pascal Hermes / optics systematics, Alfa, alice
Mirko Poger, Ghislain Roy, Alick Macpherson, Enrico Bravin / EICs

Short overview here (detailed MD Note in preparation)

18/06, Mon. night before the MD, (partial) recommissioning 90 m
21/06, Thu . morning, de-squeeze to 500 m flat machine, measure + correct optics
23/06, Sat. morning, separation on, remeasure 500 m , first (successful) attempt to 1000 m
done with probe beams
at very end started with 2 nominal bunches, ok to 90 m

2012 : "high luminosity" $90 \mathrm{~m}+$ highest β *

Commissioning

$+\mathrm{MD}$

Apr				May			June							
Wk	14	15	16	17	18	19	20	21	22	23	24	25	2	
Mo	2	Easter					14		Whit			90 m [12 h]		25
Tu					t May									
We				TS1			VdM scans [48 h]						rs2	
Th												MDI		
Fr	G. Friday													
Sa			MD									MD2		
Su												-		

90 m
for physics

Intermediate $\boldsymbol{\beta}=\mathbf{9 0} \mathbf{m}$ for elastic $\mathrm{pp}+$ diffractive physics TOTEM+CMS, ALFA/ATLAS

Higher luminosity : going to \sim nominal intensity and more bunches, Theoretical maximum without crossing angle : 156 bunches, spaced by 525 ns

Required collimation + roman pot set-up
follwed by full MPS validation : loss maps and asynchrocnous dump check and finally one $90 \mathbf{~ m}$ fill for physics

Just before the MD, (partial) recommissioning 90 m

Time and (b2) loss due to RF-HW fault,
just possible to see that
the cloning of de-squeeze from 11 m to 90 m for 4 TeV worked well including optics correction
Had to give up on 2nd fill with higher intensities re-adjusting collisions, collimators, RPs
Instead, first successful checkout of the sequence to 500 m with remaining beam + opt. meas. b1

90 m run 6-7/7/2012

3 bunches 8e10, of which 2 colliding in IP1\&5
Program : find collisions, align TCTs in IR1\&5, align all RPs data taking with RPs close to beam - for elastic pp scattering

fill 2813 : much of b2 colliding bunches lost after collapsing separation octupoles were at 200A, damper on, 2 x reduced gain
beam1 $\mathrm{Qx}{ }^{\prime}=+3.3$, Qy ' $=3.7$
beam $2 \mathrm{Qx}^{\prime}=+2.4, \mathrm{Qy}^{\prime}=1.9$
Next fill : octupoles 300 A, colliding first IP1, then IP5, OK

Steps to develop the 2012 high- β optics

plotting the ratio $\mathrm{b} 1 / \mathrm{b} 2$ ratios - at the end of a matching campaign

2012-01-30 13:12:03

ratio limits, 30 Nov. 2011

ratio limits early march 2012

2012-03-09 13:43:30
~/mad/totem/2012/120-1000-mu-nn18

$\sim / \mathrm{mad} /$ totem/2012/120-1000-mu-nn18-refitted

Q8, Q7 ratios at the limit

Example for the remaining "fluctuations", RQ4R

High- β MD1

flat machine, measure + correct orbits, tune, coupling, chromaticity at 500 m : optics measurement, optics correction, re-measure optics

High $-\beta$ MD2

High- β MD2 23/6/2012 Fills 2769, 2770

- separation on, de-squeeze to 90 m and 500 m without stops
- completion of 500 m measurements of the corrected optics
- successful attempt to continue to $1000 \mathrm{~m}+$ optics measurements (uncorrected)
- at very end started with 2 nominal bunches, ok to 90 m (lost by OFB on in collapse sep. bump)

Orbit and Tune in de-squeeze, MD2

shown : tune adjust at stops already done, here remaining feedback trim to keep tune constant, with visible small tune excursion between match points, -- these were also incorporated, so that tunes should now be flat (could run without feedback)

500 m optics well measured and corrected

 available as backup in case of unforeseen problems at $1 \mathbf{k m}$

1000 m optics looks good, $\boldsymbol{\beta}$-beating similar to 500 m should be corrected and re-measured before spending time on finding collisions, collimation, roman pot adjust

- Very good start for high- $\boldsymbol{\beta}$ this year
- 90 m back ok, this year commissioned for the first time with full MPS for many bunches and physics with stable beam (can get unstable with 8e10 colliding few σ off in both IP1\&5)
- de-squeeze to 500 m and even 1000 m work

Next steps at high- $\boldsymbol{\beta}$

Going for 1000 m (500 m as backup)

- finding collisions, non-trivial at high- β (corrector and aperture limits) requires \sim nominal intensities
- minimum emittance ($\sim 1 \mu \mathrm{~m}$, w/o scraping ?)
- roman pots very close to beam

Reserve

Calender - discussed to day in LPC

preferred schedule for the $1 \mathbf{k m}$ runs

- matched to availability of key people
- allows for time to react in case of surprises at $\mathbf{1} \mathbf{~ k m}$
- possibility of follow up in machine studies (separation bumps, emittance, scraping, collimation + RP closest approach to core ..)

using the current schedule V2.0, from 4/7/2012

Aperture
B1

LHC E1 - Vertical (1) Aperture Bottleneck Display

min. Aperture Element Name + value in beam_en	
MCBXH.1R5	19.936

LHC E2 - Horizontal @ Aperture Eottleneck Display
Emitrance $[\mathrm{m}]=3.5 E-6$
$d p / p=0.0$

min. Aperture Elerment Name + value in beam_on

$$
\begin{array}{l|r}
\text { MQML.5L1.B2 } & 21.151
\end{array}
$$

LHC E2 - Vertical (1) Aperture Bottleneck Display

IP1

