Intermediate β^* optics for ALICE

Pascal D. Hermes

19.07.2012

Thanks to J.Jowett, H.Burkhardt

Pascal D. Hermes

Intermediate β^* optics for ALICE

19.07.2012 1 / 30

High β on IR2 and IR1/IR5 $\rm A~brief~overview$

Requested for ALICE

- β* of 30-50 m
- $\Delta \mu_{x,y}^{RP}$ close to 90°
- RP's position to be defined
- Consistent with high luminosity in other IPs
- 25 ns bunch spacing
- Crossing Angle
- Long term runs

H. Burkhardt for IR1/IR5 :

- $\beta^* =$ 90 m, 500 m, 1000 m
- $\Delta\mu_x^{RP}pprox 180^\circ$, $\Delta\mu_y^{RP}pprox 90^\circ$
- $\bullet~{\rm RPs}$ at $\pm~220/240\,{\rm m}$ from IP
- Low luminosity
- 525 ns bunch spacing
- Head-on Collisions, No Crossing Angle
- Special runs (pprox 8 days/year)

First Study - $\beta^* = 30 \,\mathrm{m}$

- Start with intermediate value : $\beta^* = 30 \,\mathrm{m}$
- Assume RPs at 220 m left and right of IP2
- Phase advance of 90° not feasible ightarrow Compromise 120°
 - Sufficiently far from point to point focusing (180 $^{\circ}$)
 - Reconstruction via multiple successive detectors
 - OK with experimentalists
- Rest : usual constraints quad limitations, B1/B2 ratio limit, α , β , D, at IP and start/end of IR, aperture
- Matching with all bumps off

Roman Pot Placement

Roman Pot Placement

Roman Pot Placement

Roman Pots

Roman Pots Positioning for TOTEM & ALICE

Roman Pots Positioning for TOTEM & ALICE - right hand side

Roman Pots Positioning - left hand side

- Q4-Q5 area blocked by injection kicker
- RP left of Q5?

30 m optics for IR2 Beta functions

Optics

30 m optics for IR2 Beta functions

Optics

30 m optics for IR2 Optics Parameters

IP			RPs		
Parameter	Unit	Value	Parameter	Unit	Value
ϵ_N	μ m	3.75	β_{x}	m	496.2
$\beta^*_{x,y}$	m	30	β_y	m	155.8
$\alpha^*_{x,y}$		0	σ_{x}	μ m	499
$D_{x,y}^*$	m	0	σ_y	μ m	280
$\sigma_{x,y}$	μ m	123	$\Delta \mu_{x,y}$	2π	1/3

Optics

30 m optics for IR2

Aperture for a flat machine

- Min. value around 17.4 for both Beams
- Re-check with new ALICE beam pipe

TABLE: Phase shifts between IP and Q6 (230 m right of IP for Beam 1)

τοτι	ALICE				
$eta^{st}\left(m ight)$	$\Delta \mu_x$	$\Delta \mu_y$	$\beta^*(m)$	$\Delta \mu_x$	$\Delta \mu_y$
0.55	0.54	0.28	10	0.55	0.52
90	0.51	0.25	30	0.34	0.34
Difference	0.03	0.03		0.21	0.18
Compensation	0.23	0.06		0.47	0.41

- Need for higher compensation for IR2 is evident
- IR1/IR5 : Good experience with ramping the arc quads (globally)
- Comparable compensation for 500 m on ALFA and TOTEM
- $\bullet\,$ For high luminosity : phase advance constraints between IR1/IR5

Crossing Angle

- \bullet Vertical crossing angle, max. $\pm 150\,\mu\mathrm{rad}$
- Results from external bumps and ALICE spectrometer bump Half crossing angle for protons at 7 TeV :

$$\theta_{yc} = \pm 70 \,\mu \text{rad} + \theta_{y,\text{ext}}$$
 (1

- Required angle for high β depends on :
 - bunch spacing,
 - required separation at first parasitic beam encounter,
 - emittance

Crossing Angle and β^*

What is the highest applicable β^* value in function of crossing angle?

In function of bunch spacing

- 25 ns much harder than 50 ns
- quadratic dependancy
- For 30 m and 10 σ separation :

$$\theta_{yc} = \begin{cases} \pm 165.4 \,\mu\text{rad} & \text{for } 25 \,\text{ns} \\ \pm 84.6 \ \mu\text{rad} & \text{for } 50 \,\text{ns} \end{cases}$$
(2)

Matching Crossing Angle

Crossing Angle and β^*

What is the highest applicable β^* value in function of crossing angle?

In function of emittance

- β^* increases with decreasing emittance
- For 30 m and 10 σ separation :

 $\begin{cases} \pm 165.4 \,\mu \text{rad} & \text{for } 3.75 \,\mu \text{m} \\ \pm 143.0 \,\mu \text{rad} & \text{for } 2.8 \,\mu \text{m} \\ \pm 120.8 \,\mu \text{rad} & \text{for } 2 \,\mu \text{m} \end{cases}$

(3)

Crossing Angle and β^*

Most conservative consideration

- Normalized Emittance 3.75 μ m rad
- Bunch Spacing 25 ns
- Separation at first parasitic beam encounter $>10\,\sigma$
- Required half-crossing angle for 30 m :

$$\theta_{yc} = \pm 165.4 \,\mu \text{rad} = \pm (\theta_{\text{spec}} + 95.4) \,\mu \text{rad}$$
 (4)

- Not feasible with present magnets
- Let's check the separation for $\pm 150\,\mu{
 m rad}$

Crossing Angle for the 30 m optics Crossing Scheme for $\theta_{yc} = \pm 150 \,\mu$ rad

Crossing Angle for the 30 m optics

Aperture with crossing angle

Matching Crossing Angle

Crossing Angle for the 30 m optics Separation for $\theta_{yc} = \pm 150 \,\mu$ rad and $\epsilon_N = 3.75 \,\mu$ m

• Around 9σ separation at first parasitic beam encounter

Pascal D. Hermes

Crossing Angle Validation

Use a more optimistic model

- Separation of 9 σ for DR emittance
- $\bullet\,$ For 50 ns the LHC runs with emittances down to 2 $\mu{\rm m}\,$
- Assuming to reach the same at 25 ns, separation lies in between 9σ (for 3.75 μ m) and more than 12σ (for 2μ m)
- Limit for 10σ is $\epsilon_N = 3.1 \, \mu m$

- Higher β^* might be reachable
- Phase advance will be closer to $\frac{\pi}{2}$
- But : Crossing angle must be higher or emittance smaller
- With $\theta_{yc}=\pm 150\,\mu{
 m rad}$, separation of 10 σ and $\epsilon_{N}=2\,\mu{
 m m}$:

$$\beta^*(\max) = 46 \,\mathrm{m} \tag{5}$$

• Additional horizontal crossing angle?

Diffractive physics The aim of high β

We want to measure :

- Diffraction angle on IP $\theta^*_{x,y}$
- Momentum loss $\xi = \frac{\Delta p}{p}$

At position s (e.g. at the RPs), we have

$$\begin{pmatrix} x \\ \theta_x \\ y \\ \theta_y \\ \xi \end{pmatrix} = \begin{pmatrix} v_x & L_x & 0 & 0 & D_x \\ v'_x & L'_x & 0 & 0 & D'_x \\ 0 & 0 & v_y & L_y & D_y \\ 0 & 0 & v'_y & L'_y & D'_y \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^* \\ \theta^*_x \\ y^* \\ \theta^*_y \\ \xi \end{pmatrix}$$

(6)

Diffractive physics Matrix Elements

In our special case we have (in one transverse direction)

$$\begin{pmatrix} v & L \\ v' & L' \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta}{\beta^*}} \cos \Delta \mu & \sqrt{\beta^* \beta} \sin \Delta \mu \\ -\frac{1}{\sqrt{\beta \beta^*}} (\alpha \cos \Delta \mu + \sin \Delta \mu) & \sqrt{\frac{\beta^*}{\beta}} (\cos \Delta \mu - \alpha \sin \Delta \mu) \end{pmatrix}$$
(7)

- Fully determined by the optics
- We know all the matrix elements

Outlook

Diffractive physics

Transfer Matrix

	RP1 (1	.50m)	RP2 (220 m)		
	X	У	X	У	
<i>L</i> (m)	75.8	90.0	105.6	59.2	
L'	-0.60	1.31	0.82	-1.10	
V	-0.59	-0.89	-2.03	-1.14	
$10^2 \cdot v' \; (m^{-1})$	-0.84	-2.4	2.5	-0.43	
$10^2 \cdot D(m)$	8.33	-2.87	5.82	-1.59	
$10^4 \cdot D'$	-12.97	-4.14	-0.06	3.47	

• v and v' are 0 for $\Delta \mu = \pi/2$

• We will have to consider x^* , since we don't have $\pi/2$

Diffractive Physics Acceptance Plots

$$\begin{pmatrix} x\\ \theta_x\\ y\\ \theta_y\\ \xi \end{pmatrix} = \begin{pmatrix} v_x & L_x & 0 & 0 & D_x\\ v'_x & L'_x & 0 & 0 & D'_x\\ 0 & 0 & v_y & L_y & D_y\\ 0 & 0 & v'_y & L'_y & D'_y\\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^*\\ \theta^*_x\\ y^*\\ \theta^*_y\\ \xi \end{pmatrix}$$

- Acceptance plots will show the detectable range of ξ and θ for the given optics, defined by the transition matrix
- With two RP stations we can reconstruct the parameters
- Reconstruction algorithm will be developed

(8)

- Injection at 10 m
- \bullet De-Squeeze from nominal optics to high β
- Several intermediate steps for smooth transition
- Not matched yet

- First study on high β optics for IR2
- Machine is compatible to 30 m
- High luminosity running possible (with low emittance)
- Two roman pot stations, prospectively at 150 and 220 m left and right of IP
- De-squeeze and acceptance plots will follow
- Check tune compensation

Tune compensation strategy

• What should be the phase advance between IR1 and IR5?

Crossing angle

• Horizontal crossing angle?