Chromatic effects due to off-momentum operation for p-Pb at 4 Z TeV

Reine Versteegen LCU Meeting – 21st August 2012

Introduction

p-Pb operation at 4 Z TeV implies colliding beams off-momentum because of the non equal revolution frequencies. So far equivalent and opposite shifts have been considered:

 $\delta = \pm 2.3 \text{ x } 10^{-4} \text{ at } 4 \text{ Z TeV}$

leading to ~ 0.5 mm maximum orbit shift in the arcs (s = 0 is IP6):

Introduction

- Most important effect of the horizontal orbit shift is the focusing errors, referred to as intrinsic beta-beating $\Delta\beta/\beta$, to be superimposed to beta-beating due to field errors and misalignments,
- Off-momentum operation also impacts on the tune Q and the chromaticity ξ.
- Outline :
 - I- Influence of β^* on $\Delta\beta/\beta$
 - II- Analytical approach for $\Delta\beta/\beta$ correction
 - III- Application to the squeeze
 - IV- Chromaticity compensation
 - V- Effects of octupoles

I- Influence of β^* on $\Delta\beta/\beta$ (1/2)

 $\Delta\beta/\beta$ calculated from MADX TWISS, for

- o $\beta^*(IP1, IP2, IP5, IP8) = (0.6, 0.6, 0.6, 2.0) m$,
- $\circ~\delta$ = ± 2.3 x 10^{-4} depending on the beam.

- => ~12 % max. intrinsic beta-beating

I- Influence of β^* on $\Delta\beta/\beta$ (2/2)

• $\Delta\beta/\beta$ is reduced for higher β^* at IP1, IP2, IP5, keeping the same shape:

• $(\Delta\beta/\beta)_{max}$ ratio for $\beta^* = 0.8 \text{ m vs } \beta^* = 0.6 \text{ m}$: About 30% less beta-beating at 0.8 m (av.)

B1, H	B1, V	B2, H	B2, V
0.72	0.73	0.61	0.77

 Maximum Δβ/β for β*(IP8) = 3.0 m vs 2.0 m, for β*(IP1, IP2, IP5) = 0.6 m: max. 0.4% for B2 V

-> reducing β*(IP8) from
3.0 m to 2.0 m has a
small impact on Δβ/β.

β*(IP8) (m)	B1, H	B1, V	B2, H	B2, V
3.0	12.07 %	8.90%	8.16 %	9.81 %
2.0	12.32 %	8.93 %	8.27 %	9.43 %

II- Analytical approach for $\Delta\beta/\beta$ correction (1/4)

• $\Delta\beta/\beta$ can be calculated analytically for a momentum offset δ :

$$\frac{\Delta\beta}{\beta}(s_0) = -\frac{\delta}{2\pi \sin Q} \sum_{quads} \beta K1L \cos[2(|\varphi - \varphi(s_0)| + 2\pi Q)] + \frac{\delta}{2\pi \sin Q} \sum_{sextus} \beta K2L D_x \cos[2(|\varphi - \varphi(s_0)| + 2\pi Q)]$$

- Assuming $K1_nL_n = K1_nL_n + \Delta K1_nL_n$, for the n^{th} quadrupole, we can solve $\frac{\Delta\beta}{\beta}(s_0, \delta) = 0$ for $\Delta K1_n$,
- From $\Delta Q = \frac{1}{4\pi} \sum_{n=1}^{N_q} \beta \Delta K 1L$, with N_q the number of correctors, we add a constraint to the system to minimize the impact on the tune,
- Finally we search $\Delta K 1_n$ minimizing the following quantity (SVD method, Mathematica):

$$\begin{bmatrix} \Delta\beta/\beta_1 \\ \vdots \\ \Delta\beta/\beta_{N_M} \\ 0 \end{bmatrix} + \begin{bmatrix} c_{11} & \cdots & c_{1N_q} \\ \vdots & \ddots & \vdots \\ c_{N_M1} & \cdots & c_{N_MN_q} \\ c_{Q1} & \cdots & c_{QN_q} \end{bmatrix} \cdot \begin{bmatrix} \Delta K1_1 \\ \vdots \\ \Delta K1_{N_q} \end{bmatrix}$$

with N_M observation locations (i.e. No. of BPMs for example), and N_q matching quadrupoles.

II- Analytical approach for $\Delta\beta/\beta$ correction (2/4)

- Similar method as R. Tomás *et al.* GUI software using a PTC tracking, but :
 - $\Delta\beta/\beta$ is derived from the analytical expression => no tracking, focus on the first order,
 - $\circ~$ Correction is calculated using of the β -function, not $\phi,$ implying the special care for the tune,
 - Chromaticity correction is implemented in the process before $\Delta\beta/\beta$ correction for off-momentum beams, and after.
- Both approaches are compared for $\beta^*(IP1, IP2, IP5, IP8) = (0.6, 0.6, 0.6, 3.0)$ m.
 - Only correctors with separated powering for B1 and B2 are selected: MQM, MQT, MQTL, MQY,
 - Only the non zero strengths given by the software are used in the calculation to use same correctors and limit their amount.

II- Analytical approach for $\Delta\beta/\beta$ correction (3/4)

• Results, $\Delta\beta/\beta$ at the BPMs as calculated by MADX (s = 0 is IP6)

II- Analytical approach for $\Delta\beta/\beta$ correction (4/4)

- More correctors are needed for B1 as there was more beta-beating in x-plane,
- Results are very similar for both methods, validating the analytical approach,
- $\Delta Q < 1 \times 10^{-3}$,
- Correction can be even better without the constraint on the tune, but then $\Delta Q \sim 10^{-2}$ while the tolerance is 2.5×10^{-3} .

III- Application to the squeeze (1/2)

20

20

R. Versteegen - LCU Meeting

25

25

- New squeeze procedure : β^* is decreased down to 0.6 m at IP1/2/5 and to 2.0 m at IP8 simultaneously,
- $\Delta\beta/\beta$ correction is calculated and applied at each step, limiting the tune perturbation and adjusting the chromaticity to \sim (2,2),
- Correction may not be required for the first steps, • but could ease the procedure from about step no. 7 $(\beta^* = (2, 2, 2, 3.25)).$

III- Application to the squeeze (2/2)

Correction could be implemented in the squeezing procedure as a knob.

IV- Chromaticity compensation (1/1)

• ξ is matched on-momentum in MADX -> adjusted to $\xi(-\delta)$ to get ~ 2 at + δ and vice-versa, Error gets bigger as intrinsic $\Delta\beta/\beta$ increases, but still 1.5 < ξ < 2.6 for β^* = 0.6 m (after $\Delta\beta/\beta$ correction)

• Δ K2 needed after $\Delta\beta/\beta$ correction is about the opposite of Δ K2 needed off momentum before correction, leading a total relative difference with respect to on-momentum values of Δ K2 /K2 < 2% (would be 0 for perfect correction).

V- Effects of octupoles (1/2)

• Horizontal non zero orbit δD_x in the octupoles leads to ξ and Q shifts and additional $\Delta\beta/\beta$

$$\Delta \xi = \pm \frac{\delta}{4\pi} \sum_{octus} \beta \ K3L \ D_x^2$$
$$\Delta Q = \pm \frac{\delta^2}{8\pi} \sum_{octus} \beta \ K3L \ D_x^2$$

$$\frac{\Delta\beta}{\beta}(s_0) = \pm \frac{\delta^2}{4\pi \sin Q} \sum_{octus} \beta K3L D_x^2 \cos[2(|\varphi - \varphi(s_0)| + 2\pi Q)]$$

• Given the p-intensity ~1.1x10¹⁰ charges, $I_{oct} = 50$ A or K3 = 2.5 m⁻⁴ was used, and, depending on the beam

$$\Delta \xi_{\chi} \approx \pm 0.84, \qquad \Delta \xi_{\chi} \approx \pm 0.045$$

which is compensated by additional $\Delta K2/K2 \sim 0.4$ % maximum => same order of magnitude than the resulting variation after $\Delta\beta/\beta$ correction.

• Doubling the intensity would imply doubling this effect if the octupoles are needed.

V- Effects of octupoles (2/2)

- Second order effects in Δx are very small:
 - tune shifts: $\Delta Q_x \approx 1.10^{-4}$, $\Delta Q_y \approx -5.10^{-6}$

• beta-beating (IP6 is at s = 0):

=> Tune shift is less than one order of magnitude smaller than the tolerance and $\Delta\beta/\beta$ is less than 0.2 % of the remaining beating after correction.

Conclusion (1/2)

- Operating with $\beta^* = 0.6$ m would increase the intrinsic beta-beating of about 30% av. compared to $\beta^* = 0.8$ m,
- Going down to $\beta^* = 2$ m at IP8 would have negligible impact on beta-beating,
- Intrinsic beta-beating can be corrected offline for any set of β* without requiring a particle tracking, but only the on-momentum Twiss tables from MADX,
- Application to the squeeze procedure shows that correcting beta-beating could ease the operation by reducing intrinsic errors, especially from about the middle of the sequence (β*~2 m at IP1/2/5),
- Matching quadrupoles' strength could be implemented in the squeezing procedure as a knob.

Conclusion (2/2)

- Correction scheme does not affect the tune more than $\pm 1 \times 10^{-3}$ while the tolerance is $\Delta Q = 2.5 \times 10^{-3}$,
- Adjustments of sextupoles' strength to maintain chromaticity close to 2 units are less than 2 % maximum of the values required on-momentum.
- Orbit offset in octupoles generates chromaticity of the order of 1 unit in x-plane for I_{octu} = 50A. Would double if we double the p beam intensity with octupoles ON,
- Tune shift and beta-beating due to octupoles are negligible,
- Correction should be calculated for reversed beams, Pb in B1 (- δ) and p in B2 (+ δ).

Back up

 $\Delta \mu = \mu_{\delta} - \mu_0$

Tunes after analytic $\Delta\beta/\beta$ correction in the squeeze

Iterations on K2

