H. Burkhardt, LCU 18/09/2012

Thin lens slicing

Thin lens version of magnet lattice : for tracking and error assignment

The makethin module in MAD-X allows for automatic slicing

```
MAKETHIN,SEQUENCE=sequence name, STYLE=slicing style;
where STYLE
SIMPLE : this is a simplified slicing algorithm which produces any number of equal strength
slices at equidistant positions with the kick in the middle of each slice.
TEAPOT (default): this is the standard slicing. It has a maximum of four slices for any one
object.
```

Much used with MAD-X and SIXTRACK for the LHC
TEAPOT is much better than SIMPLE, described in recent IPAC' 12 paper
Tracking LHC Models with Thick Lens Quadrupoles: Results and Comparisons with the Standard Thin Lens Tracking, tuppc079

Here : extending TEAPOT slicing to any $\mathrm{n}>1$, by minimizing the 3rd order focusing term in the transfer matrix

Makethin updated and ATS Note with details written, to be released soon

Acknowledgment : discussions with
Massimo Giovannozzi, Thys Risselada, John Jowett, Werner Herr, Laurent Deniau, Riccardo De Maria

Matrices, thick/thin quadrupole and drift

For the discussion sufficient to work in 2-dimensions x, x ' (or equivalently y, y ')

$$
\begin{aligned}
\mathbf{M}_{\mathrm{thick}}(K, L) & =\left(\begin{array}{cc}
\cos K L & \frac{\sin K L}{K} \\
-K \sin K L & \cos K L
\end{array}\right) \\
\mathbf{M}_{\text {drift }}(d) & =\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right) \\
\mathbf{M}_{\text {thin }}(K L) & =\left(\begin{array}{cc}
1 & 0 \\
-K^{2} L & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)
\end{aligned}
$$

2,1 matrix element, focusing term
where
K^{2} quadrupole strength and L its length, $\mathrm{f}=1 / K^{2} L$ the focal length
d is the drift length

$$
\mathbf{M}_{\text {simple }}(K, L, n)=\left(\mathbf{M}_{\text {drift }}\left(\frac{L}{2 n}\right) \mathbf{M}_{\text {thin }}\left(\frac{K L}{n}\right) \mathbf{M}_{\text {drift }}\left(\frac{L}{2 n}\right)\right)^{n}
$$

Taylor expansions of the 2,1 matrix elements to 5 th order in L

$$
\begin{aligned}
\mathbf{M}_{\mathrm{thick}}(K, L)_{2,1} & =-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120}\right) \\
\mathbf{M}_{\text {simple }}(K, L, n)_{2,1} & =-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}\left(1-\frac{1}{n^{2}}\right)+\frac{K^{4} L^{4}}{120}\left(1-\frac{5}{n^{2}}+\frac{4}{n^{4}}\right)\right)
\end{aligned}
$$

differ in 3rd order in L

This can be fixed by moving the thin slices a bit closer to the edge ---> TEAPOT slicing

one single new parameter δ, distance to the edge in units of L
$2 \delta+(\mathrm{n}-1) \Delta=1$

TEAPOT much better than SIMPLE

TEAPOT slicing

$$
\mathbf{M}_{\text {teapot }}(K, L, n, \delta)=\mathbf{M}_{\text {drift }}(L \delta) \quad\left(\mathbf{M}_{\text {thin }}\left(\frac{K L}{n}\right) \mathbf{M}_{\text {drift }}(L \Delta)\right)^{(n-1)} \mathbf{M}_{\text {thin }}\left(\frac{K L}{n}\right) \mathbf{M}_{\text {drift }}(L \delta)
$$

Taylor expansions to 5th order on L

$$
\begin{aligned}
& \mathbf{M}_{\text {teapot }}(K, L, n, \delta)_{2,1}=-K^{2} L\left[1-\frac{K^{2} L^{2}}{6}\left(1+\frac{1}{n}\right)\right.(\underbrace{(1-2 \delta)}+\frac{K^{4} L^{4}}{120} \frac{\left(n^{2}-4\right)(n+1)}{n^{2}(n-1)}(1-2 \delta)^{2}] \\
&=1 \quad \text { for } \quad \delta=\frac{1}{2} \frac{1}{1+n}
\end{aligned}
$$

so that

$$
\mathbf{M}_{\text {teapot }}(K, L, n)_{2,1}=-K^{2} L\left[1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120} \frac{n^{2}-4}{n^{2}-1}\right]
$$

which agrees with the thick matrix element to L^{3}

$$
\mathbf{M}_{\text {thick }}(K, L)_{2,1}=-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120}\right)
$$

TEAPOT slicing

n	δ	Δ teapot	Δ simple
2	$1 / 6$	$n / 3=0.6666$	$1 / n=0.5$
3	$1 / 8$	$n / 8=0.375$	$1 / n=0.33333$
4	$1 / 10$	$n / 15=0.2666$	$1 / n=0.25$
n	$1 /(2(1+n))$	$n /\left(n^{2}-1\right)$	$1 / n$

old code in makethin, limited to 4

```
static double
teapot_at_shift(int slices,int slice_no)
{
    double at = 0;
    switch (slices)
    {
        case 1:
            at = 0.;
            break;
        case 2:
            if (slice_no == 1) at = -1./3.;
            if (slice_no == 2) at = +1./3.;
            break;
        case 3:
            if (slice_no == 1) at = -3./8.;
            if (slice no == 2) at = 0.;
            if (slice_no == 3) at = +3./8.;
            break;
        case 4:
            if (slice_no == 1) at = -2./5.;
```

 new code, \(O K\) for any \(n\)
 inline double teapot_at_shift(int n,int i)
$\{\operatorname{return}((n>1) ?(0.5 * n *(1-2 * i+n) /(1-n * n)): 0) ;\}$
result exactly the same as before for $\mathrm{n}=2,3,4$

References

TEAPOT

L. Schachinger and R. Talman, "TEAPOT: A thin element accelerator program for optics and tracking", Part.Accel. 22 (1987) 35, SSC-052.
R. Talman, "Representation of Thick Quadrupoles by Thin Lenses", SSC-N-033, August 1985.

LHC, MAD-X

H. Burkhardt, M. Giovannozzi, and T. Risselada, "Tracking LHC Models with Thick Lens Quadrupoles: Results and Comparisons with the Standard Thin Lens Tracking", Conf.Proc. C1205201 (2012) 1356-1358, Proc. IPAC 2012 TUPPC079.

Symplectic integration

E. Forest and R. Ruth, "Fourth order symplectic integration", Physica D43 (1990) 105-117.
H. Yoshida, "Construction of higher order symplectic integrators", Phys.Lett. A150 (1990) 262268.
A. Chao, "Lecture notes on topics in accelerator physics", SLAC-PUB-9574.

Backup

Matrices to 5-order

$$
\begin{aligned}
& \mathbf{M}_{\mathrm{thick}}(K, L)=\left(\begin{array}{cc}
1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24} & L\left(1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120}\right) \\
-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120}\right) & 1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24}
\end{array}\right) \\
& \mathbf{M}_{\text {teapot }}(K, L, n)=\left(\begin{array}{cc}
1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24} \frac{n^{2}-2}{n^{2}-1} & L\left(1-\frac{K^{2} L^{2}}{6} \frac{2 n^{2}-3}{2 n^{2}-2}+\frac{K^{4} L^{4}}{120} \frac{n^{4}-4 n^{2}+5}{n^{4}-2 n^{2}+1}\right) \\
-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}+\frac{K^{4} L^{4}}{120} \frac{n^{2}-4}{n^{2}-1}\right) & 1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24} \frac{n^{2}-2}{n^{2}-1}
\end{array}\right) \\
& \mathbf{M}_{\text {simple }}(K, L, n)= \\
& \left(\begin{array}{cc}
1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24}\left(1-\frac{1}{n^{2}}\right) & L\left(1-\frac{K^{2} L^{2}}{6}\left(1+\frac{1}{2 n^{2}}\right)+\frac{K^{4} L^{4}}{120}\left(1-\frac{1}{n^{4}}\right)\right) \\
-K^{2} L\left(1-\frac{K^{2} L^{2}}{6}\left(1-\frac{1}{n^{2}}\right)+\frac{K^{4} L^{4}}{120}\left(1-\frac{5}{n^{2}}+\frac{4}{n^{4}}\right)\right) & 1-\frac{K^{2} L^{2}}{2}+\frac{K^{4} L^{4}}{24}\left(1-\frac{1}{n^{2}}\right)
\end{array}\right)
\end{aligned}
$$

Matrices to 5-order

Rewrite this in terms of focal length $f=\frac{1}{K^{2} L}$, and the ratio of length to focal length $r=L / f$,

$$
\begin{aligned}
& \mathbf{M}_{\text {thick }}(K, L)=\left(\begin{array}{cc}
1-\frac{r}{2}+\frac{r^{2}}{24} & L\left(1-\frac{r}{6}+\frac{r^{2}}{120}\right) \\
-\frac{1}{f}\left(1-\frac{r}{6}+\frac{r^{2}}{120}\right) & 1-\frac{r}{2}+\frac{r^{2}}{24}
\end{array}\right) \\
& \mathbf{M}_{\text {teapot }}(K, L, n)=\left(\begin{array}{cc}
1-\frac{r}{2}+\frac{r^{2}}{24} \frac{n^{2}-2}{n^{2}-1} & L\left(1-\frac{r}{6} \frac{2 n^{2}-3}{2 n^{2}-2}+\frac{r^{2}}{120} \frac{n^{4}-4 n^{2}+5}{n^{4}-2 n^{2}+1}\right) \\
-\frac{1}{f}\left(1-\frac{r}{6}+\frac{r^{2}}{120} \frac{n^{2}-4}{n^{2}-1}\right) & 1-\frac{r}{2}+\frac{r^{2}}{24} \frac{n^{2}-2}{n^{2}-1}
\end{array}\right) \\
& \left.\mathbf{M}_{\text {simple }}(K, L, n)=\begin{array}{c}
1-\frac{r}{2}+\frac{r^{2}}{24}\left(1-\frac{1}{n^{2}}\right) \\
\left(1-\frac{r}{6}\left(1+\frac{1}{2 n^{2}}\right)+\frac{r^{2}}{120}\left(1-\frac{1}{n^{4}}\right)\right) \\
\left(\begin{array}{c}
-\frac{1}{f}\left(1-\frac{r}{6}\left(1-\frac{1}{n^{2}}\right)+\frac{r^{2}}{120}\left(1-\frac{5}{n^{2}}+\frac{4}{n^{4}}\right)\right)
\end{array}\right.
\end{array}\right)
\end{aligned}
$$

Typical numbers, LHC

Arc quadrupoles $\mathrm{L}=3.1 \mathrm{~m} \quad \mathrm{~K}=\sqrt{ } 0.0088 / \mathrm{m} \quad \mathrm{KL}=0.291, \mathrm{f}=36.65 \mathrm{~m}, \mathrm{r}=0.84568$
Mthick $=\left(\begin{array}{cc}0.958013 & 3.05649 \\ -0.0268971 & 0.958013\end{array}\right)$
Msimple $=\left(\begin{array}{cc}0.957939 & 3.05102 \\ -0.0269916 & 0.957939\end{array}\right) \quad$ Mteapot $=\left(\begin{array}{cc}0.957915 & 3.06369 \\ -0.0268955 & 0.957915\end{array}\right)$
relative error

$$
\left(\begin{array}{cc}
0.0000768869 & 0.00179057 \\
-0.0035135 & 0.0000768869
\end{array}\right) \quad\left(\begin{array}{cc}
0.000102808 & -0.00235581 \\
0.0000603247 & 0.000102808
\end{array}\right)
$$

Teapot nearly $60 \times$ better in M21
For the other matrix elements the precision is similar to simple slicing

