Further Analysis of the p-Pb Pilot Run

M.Schaumann for the p-Pb team:

R. Alemany, M. Angelotta, P. Baudrenghien, S. Hancock, D. Jacquet, J. Jowett, V. Kain, M. Kuhn, M. Lamont, D. Manglunki, M. Sapinksi, M. Solfaroli, R. Versteegen, J. Wenninger and others ...

LCU Meeting – 2nd October 2012

Injection Scheme

- Injection of 15 p and 15 Pb bunches
- 2 bunch/beam used for loss maps done before stable beams
- I bunch/beam was noncolliding
- I 2 bunches per beam left to provide 8 collisions per IP
- Injection optics no squeeze

•
$$\beta^* = 10 \text{ and } 11 \text{ m}$$

	IN	JE		; E	31	INJECTIONS B2								
	RFBucket		bu/batch			Bunch Int		RFBucket		bu/batch			Bunch Int	
	1	0	1	1	1	100	0	1	0	1	1	1	100	0
	1001	0	1	1	1	100	0	1001	0	1	1	1	100	0
	2001	0	1	1	1	100	0	2001	0	1	1	1	100	0
	3001	0	1	1	1	100	0	3001	0	1	1	1	100	0
>	6001	0	1	1	1	100	0	5001	0	1	1	1	5	0
1	8941	0	1	1	1	100	0	8911	0	1	1	1	100	0
	9941	0	1	1	1	100	0	9911	0	1	1	1	100	0
	10941	0	1	1	1	5	0	10911	0	1	1	1	100	0
	11941	0	1	1	1	5	0	11911	0	1	1	1	5	0
	17851	0	1	1	1	100	0	17851	0	1	1	1	100	0
	18851	0	1	1	1	100	0	18851	0	1	1	1	100	0
	19851	0	1	1	1	100	0	19851	0	1	1	1	5	0
	20851	0	1	1	1	5	0	20851	0	1	1	1	5	0

Parameter range at start of stable beams	Protons	lons
Number of Particles per Bunch [particles]	(1.0 to 1.3) x 10 ¹⁰	(6 to 8) x 10 ⁷
Horizontal Emittance [μ m.rad]	2.0 to 3.5	1.3 to 1.5
Vertical Emittance [μ m.rad]	1.0 to 2.0	0.8 to 1.0
Bunch Length [cm]	11.5	11

M. Schaumann - p-Pb pilot run 10/02/2012

Intensity Evolution

All bunches seem to behave similarly including the noncolliding bunch

- Time = 0 corresponds to declaring STABLE BEAMS
- Thick red bunch is non-colliding
- The black dots are the energy variation (in arbitrary units)

Emittance Evolution

- The black dots are the energy variation (in arbitrary units)
- Thick red bunch is non-colliding
- Same behaviour as the other colliding bunches
- Emittance growth:
 - lons in both planes by approx. the same amount
 - Protons only horizontal growth

M. Schaumann - p-Pb pilot run 10/02/2012

What happened when ALICE was brought into collisions?

- At the moment the beams started to collide in ALICE:
 - BI suddenly loses intensity
 - B2 horizontal emittance decreases & vertical emittance increases
- ALL bunches are affected
 also non-colliding ones!
- Since the non-colliding bunches are also affected, a beam-beam effect is unlikely
- Connected with tune change from injection to collision tunes

Bunch Length

- All bunches have the same bunch length
- Ions clearly show effect of IBS
- Bunch length is increasing fast after arriving at flattop
- Length saturates around 12cm

- Proton bunch length is decreasing
- IBS is small due to low intensity
- Radiation Damping becomes visible

Measurement of the Radiation Damping Time for the Proton Beam

- Exponential growth: $\sigma_z(t) = a \exp[t/\tau]$
- Perform linear Fit: $\ln (\sigma_z(t)) = \ln a + t/\tau$
- Result: $\tau_{tot,meas} = (-108.79 \pm 0.82) h$
- CTE Simulation gives for emittance growth times:

$$\tau_{IBS} = \{226 ; 183\} h$$

 $\tau_{rad} = -69 h$ (should be 67.7 h)

•
$$\tau_{tot,calc} = 2 \times (\frac{1}{\tau_{IRS}} + \frac{1}{\tau_{rad}})^{-1} = \{-199; -222\}h$$

Simulations of the non-colliding Bunch Protons

- Simulated intensity, bunch length and vertical emittance growth fit well to the data
- Strong horizontal emittance growth
 - can not be explained by IBS
 - source unknown

Simulations of the non-colliding Bunch Ions

- Simulated intensity fits well to the data
- Bunch length shows different behaviour
 - underestimated by simulation
- Therefore, horizontal emittance growth overestimated
- Vertical emittance growth may be coupling of horizontal IBS into vertical

IBS Simulations at Injection - Ions

- Pb vertical emittance growth already visible at injection
- At 450GeV bunch length and horizontal emittance growth fits well with simulation
- But vertical emittance growth is too fast for IBS

Conclusion

- No beam-beam effect due to collisions visible in intensity, bunch length or emittance evolution when comparing colliding and non-colliding bunches
 - all bunches behave similarly
 - Change to collision tunes caused sudden proton intensity losses and emittance growth of the lead
- Radiation damping becomes visible in the longitudinal plane for the low intensity protons
 - observed damping rate not yet in agreement with the calculation
- Unexplained emittance growth in horizontal plane of the pbeam and vertical plane of the Pb-beam – too strong for IBS
- Pb vertical emittance growth also visible at injection
- Emittance calibration rely on wire scanner data but we observed some discrepancies when comparing the relative evolution with the BGI and BSRT