Parameter Space for 450 GeV

LHC Lattice Layout in IP8

IP8:"natural LHC geometry and the LHCb spectrometer effect
Design Orbit: Beam1 crosses at IP8 from ring outside to inside
-> negative horizontal angle provided by D1 \& D2.

To avoid parasitic crossings this natural crossing is supported by a so-called "external (hor.) crossing angle bump" using the Q4/Q5 correctors.

LHC-b

At injection and on the ramp we have in addition to separate the beams vertically by 2 mm using again an "external separation bump using the Q4/Q5 correctors.

LHC Lattice Layout in IP8

Situation at Luminosity:

$$
\begin{aligned}
& E=7 \mathrm{TeV} \\
& \varepsilon=3.0 \mu \mathrm{rad}
\end{aligned}
$$

LHCb angle $=x^{\prime}{ }_{\text {int }}=+/-135 \mu \mathrm{rad}$, compensated external hor. crossing angle $=0$ parasitic encounters are avoided by vertical external crossing of $y^{\prime}=90 \mu \mathrm{rad}$

LHC Lattice Layout in IP8

Situation at Luminosity:

$$
E=7 \mathrm{TeV}, \varepsilon=3.0 \mu \mathrm{rad}
$$

LHCb angle $=x_{\text {int }}=+/-135 \mu \mathrm{rad}$, compensated
external vert. crossing angle, $y^{\prime}=90 \mu \mathrm{rad}$

+/- 5σ beam envelope at IP8, in collision mode crosses mark the $25 n$ n encounters

As no external hor. crossing bump is applied the beam envelopes overlap after the LHCb compensators.
Parasitic encounters are avoided by the external vertical bump. (diagonal leveling scheme).

LHC Lattice Layout in IP8

Situation at Luminosity:

Present Situation at collisions ... The diagonal leveling scheme -Eliminate the External H crossing angle
-Introduce an External V crossing angle that combines with
LHCb spectrometer to the "diagonal leveling plane"

Situation in IR8 at Injection:

Situation at Injection:

$E=450 \mathrm{TeV}, \varepsilon=3.0 \mu \mathrm{rad}$,
LHCb Effect: "internal" horizontal crossing angle $=x$ ' $=+/-2.1 \mathrm{mrad}$
"external" hor. crossing angle to avoid parasitic encounters x ' $=-170 \mu \mathrm{rad}$
const.
vertical separation bump $\Delta y=2 m m$
This combination has to avoid encounters at any position.
Vertical plane:
LHC-Standard, Injection 450 GeV , IP8, vert Sep +/- 2 mm , en=3.0 mu

$+/-5 \sigma$ beam envelope at IP8, injection crosses mark the $25 n$ n encounters
Beams are separated at IP and the first encounters \#1 ... \#4

From encounter \#5 on the horizontal crossing bump has to do the job.

Situation in IR8 at Injection:

$E=450 \mathrm{TeV}, \varepsilon=3.0 \mu \mathrm{rad}$,
LHCb Effect: "internal" horizontal crossing angle $=x$ ' $=+/-2.1$ mrad "external" hor. crossing angle to avoid parasitic encounters - 170 urad const. vertical separation bump $\Delta y=2 m m$ This combination has to avoid encounters at any position.

Horizontal plane: LHCb = GOOD

$+/-5 \sigma$ beam envelope at IP8, injection crosses mark the 25 ns encounters Beams are separated at any encounter
$x^{\prime}=-2.1 \mathrm{mrad}-170 \mu \mathrm{rad}=2.27 \mathrm{mrad}$
No Problem.

Situation in IR8 at Injection:

Horizontal plane: $\mathrm{LHCb}=\mathrm{BAD}$

beam 1 is deflected towards outer side of LHC, the compensators are bending back the orbit -> cross over !! and the external bump is used to deliver after the compensators sufficient separation at the parasitic encounters.

$+/-5 \sigma$ beam envelope at IP8
Beams are crossing over between two 50ns encounters $x^{\prime}=+2.1 \mathrm{mrad}-170 \mu \mathrm{rad}=+1.93 \mathrm{mrad}$ cross over between two 50ns encounters.
... for 25 ns bunch spacing parasitic collisions are unavoidable !!

Situation in IR8 at Injection:

Horizontal plane: $L H C b=B A D$
Nota Bene:

* additional hor. Separation wil not help it shifts just the problem between IP8 left / right.
* a larger vertical separation would have to be HUGE to avoid encounters at \#5, \#6
* and then there is the aperture limit ...

Aperture Model: for present situation
all flags $=0$, flat orbits

all flags $=$ on

Swapping the Planes ... ?

The horizontal crossing angle bump always will have to fight against the bad LHCb polarity.
A vertical crossing angle bump does not !

$$
\begin{array}{rlrl}
\text { Idea: } \text { hor separation } & \Delta x & =2.0 \mathrm{~mm} \\
& \text { vert. crossing angle } & y & =170 \mu \mathrm{rad}
\end{array}
$$

hor.separation $=+/-2 \mathrm{~mm}$

Swapping the Planes ... ?

vert. crossing angle separates the beams from encounter \#4

LHCb internal crossing angle separates the beams at \#2 ... \#5 $\Delta \mathrm{x}=2 \mathrm{~mm}$ separates the beams at \#1 (i.e. IP)

horizontal plane: $\mathrm{LHCb}=$ good

$$
\begin{aligned}
& \text { Beam Envelopes: } \\
& \Delta x=2.0 \mathrm{~mm}, y^{\prime}=170 \mu \mathrm{rad}, \mathrm{LHCb}=\mathrm{on}
\end{aligned}
$$

The scheme works for any LHCb polarity and guarantees sufficient separation at ANY encounter !!

But ...

Aperture Model $n 1 \approx 4.5$

LHC beam screen is not symmetric hor. / vert.

Optimisation between

realistic emittance ($->$ determines crossing angle) assumptions for aperture calculations " ε, cor" reducing the crossing angle to the minimum new ideas ??
I). Installation of new magnets to close the vert. crossing bump before the inner trit

I). Installation of new magnets
 to close the vert. crossing bump before the inner triplet?

horizontal plane

LHC_Standard, IR8, inj, vert \times-angle $-/+17$ Omurad
vertical plane: $170 \mu \mathrm{rad}$ separates the beams from \#6 on until beyond D1

an internal vertical bump would reduce the separation where we need it most: inside the triplet.
We have no horizontal bump to separate the beams after the LHCb compensator !!

II). Using the mabx coils to flatten the vert. crossing bump inside the triplet? Reducina the crossina anale to the bare minimum ...

> vertical plane:
$y^{\prime}=108 \mu \mathrm{rad}$
$\varepsilon=3.0 \mu \mathrm{rad}$
mcbx1= -/+ 1.110^{-5}
to flatten the orbit
bad example: too strong mcbx1= -/+ 510^{-5} i.e. too strong

III). Optimising Y^{\prime}

Reducing the crossing angle to the bare minimum ...
$\varepsilon=3.0$,
scanning the vertical crossing angle ... with slight optimism.

IV). And again the Aperture
... for the pre-defined "Aperture Settings"

$$
y^{\prime}=108 \mu \mathrm{rad}
$$

V) Aperture Scans

$$
\varepsilon=3.0 \mu \mathrm{rad}
$$

LHC-Aperture, inj, en=3.0, cor=3.0, $y^{\prime}=0.8=108 \mathrm{murad}$

LHC-Aperture, inj, en=3.0, cor=2.0, $y^{\prime}=0.8=108 \mathrm{murad}$

V) Aperture Scans

V) Aperture Scans

$$
\varepsilon=3.5 \mu \mathrm{rad}
$$

VI.) ... and finally the measurements

MD: 29-Nov-2012, 9:00-10:34h

Logbook plots: 6-Dez-2012
hor. VdM bump ... to avoid artificial limitations of vert. aperture.

VI.) ... and finally the measurements
(vert.) orbits beam1
data_set 194, 9:50:25h at aperture limit (1 ${ }^{\text {st }}$ direction)

	v 1	-us.1	0.0	\checkmark	\checkmark	\checkmark	u	
BPM.8L8.B1	V 1	772.3	0.0	0.0	0	0	OK	
BPM.7L8.B1	$V 1$	174.0	0.0	0.0	0	0	OK	
BPMR.6L8.B1	$\vee 1$	-315.5	0.0	0.0	0	0	OK	
BPM.5L8.B1	$\vee 1$	2056.2	0.0	0.0	0	0	OK	
BPMYB.4L8.B1	$\vee 1$	9010.8	0.0	0.0	0	0	OK	
BPMWB.4L8.B1	$V 1$	6950.5	0.0	0.0	0	0	OK	
BPMSX.4L8.B1	V 1	820.0	0.0	0.0	134217729			1
BPMS.2L8.B1	V 1	-12684.9	0.0	0.0	0	0	OK	
BPMSW.1L8.B1	V 1	-9128.2	0.0	0.0	0	0	OK	
BPMSW.1R8.B1	V 1	-6708.6	0.0	0.0	0	0	OK	
BPMS.2R8.B1	V 1	-7460.4	0.0	0.0	0	0	OK	
BPMSX.4R8.B1	V 1	-2243.4	0.0	0.0	0	0	OK	
BPMWB.4R8.B1	V 1	8625.7	0.0	0.0	0	0	OK	
BPMYB.4R8.B1	V 1	7669.6	0.0	0.0	0	0	OK	
BPMYB.5R8.B1	V 1	3463.4	0.0	0.0	0	0	OK	
BPM.6R8.B1	$V 1$	-94.6	0.0	0.0	0	0	OK	
BPM_A.7R8.B1	$V 1$	-1201.8	0.0	0.0	0	\square	OK	
BPM.8R8.B1	V 1	-810.1	0.0	0.0	0	\square	OK	
now ano na	$1{ }^{1}$	ก19 -	$\bigcirc 0$	$\bigcirc \square$	\bigcirc	\bigcirc	ar	

data_set 295, 9:50:25h at aperture limit ($2^{\text {nd }}$ direction)

LrI.rluebi	v 1	uuv.r	0.0	0.0	\checkmark -	I Lᄂ_ur	
BPMR.6L8.B1	V 1	-1211.0	0.0	0.0	31	FEC_BP	_ACQ_FAILURE, FEC_BPM_ERROR_RATE_H
BPM.5L8.B1	V 1	1970.2	0.0	0.0	11	FEC_BP	_ACQ_FAILURE
BPMYB.4L8.B1	V 1	-8635.0	0.0	0.0	00	OK	
BPMWB.4L8.B1	V 1	-7091.8	0.0	0.0	0 0	OK	
BPMSX.4L8.B1	V 1	820.0	0.0	0.0	13421	7729	FEC_BPM_ACQ_FAILURE, REMOVED_OP
BPMS.218_81	U1	118ดด 9	ดด	0.0	0 0	OK	
BPMSW.1L8.B1	V 1	9607.5	0.0	0.0	00	OK	
BPMSW.1R8.B1	V 1	11003.4	0.0	0.0	00	OK	
BPMS.2R8.B1	V 1	6013.2	0.0	0.0	0 0	OK	
BPMSX.4R8.B1	V 1	2462.8	0.0	0.0	06	OK	
BPMWB.4R8.B1	V 1	-7598.4	0.0	0.0	00	OK	

VI.) ... and finally the measurements

(vert.) orbits

 beam1
beam2

VI.) ... and finally the measurements

YASP-Extraction:

overall amplitude

$$
\begin{aligned}
& 28.7 \mathrm{~mm}+2 * 4 \sigma \\
& \beta=270 \mathrm{~m}, \varepsilon_{n}=3.5->\sigma=1.5 \mathrm{~mm}
\end{aligned}
$$

aperture radius $=20.4 \mathrm{~mm}$

cross check \& summary

" never trust the BPM readings " - non-linearity problem -

Referring to the IP settings of the bump: aperture limits obtained at $\Delta y \approx+/-11 \mathrm{~mm}$ corresponds to 17.8 mm at Q2.
Overall Aperture:
$17.8 \mathrm{~mm}+4 \sigma=23.8 \mathrm{~mm}$
Compared to theoretical expected value: ...

Beam Screen Geometry in IP8 hor $*$ vert. $=29 \mathrm{~mm} * 24 \mathrm{~mm}$ ufffff ... ?????

cross check \& summary

Aperture Need:
$y^{\prime}=108 \mu \mathrm{rad}->\Delta y=6.8 \mathrm{~mm}$ at Q2
resulting n1 margin: n1 = 7
Overall Aperture Measured = 24 mm
In other words: applying 108urad gives us still margin for 17 mm ... corresponding to 12σ.

