## - Vert Crossing Angle Operation in IR8

## Bernhard Holzer

## LHCb: The Challenge

## IP8: "natural LHC geometry" and the LHCb spectrometer effect

Design Orbit: Beam1 crosses at IP8 from ring outside to inside
-> negative horizontal angle provided by D1 \& D2.

The LHCb Spectrometer Dipole and Compensators form a not really tiny little crossing angle bump in the horizontal plane ... at constant field.

* hor. crossing angle at $450 \mathrm{GeV}: x^{\prime}=+/-2.1 \mathrm{mrad}$ * " at 4 TeV: $x^{\prime}=+/-235 \mu \mathrm{rad}$ * depending on the dipole polarity


LHC-b




## LHC Lattice Layout in IP8

Situation at Luminosity:
$E=7 \mathrm{TeV}, \varepsilon=3.0 \mu \mathrm{rad}$
LHCb angle $=x^{\prime}{ }_{\text {int }}=+/-135 \mu \mathrm{rad}$, compensated
external hor. crossing angle $=0$ parasitic encounters are avoided by vertical external crossing of $y^{\prime}=90 \mu \mathrm{rad}$

$+/-5 \sigma$ beam envelope at IP8, in collision mode crosses mark the 25 ns encounters

## LHC Lattice Layout in IP8

Situation at Luminosity: combination of hor. \& vert. crossing anbgles

Present Situation at collisions ... The diagonal leveling scheme
-Eliminate the External H crossing angle
-Introduce an External V crossing angle that combines with
LHCb spectrometer to the "diagonal leveling plane"


## Situation in IR8 at Injection:

## Situation at Injection:

$$
E=450 \mathrm{TeV}, \varepsilon=3.0 \mu \mathrm{mrad},
$$

LHCb Effect: "internal" horizontal crossing angle $\quad x^{\prime}=+/-2.1 \mathrm{mrad}$
"external" hor. crossing angle to avoid parasitic encounters $x$ " $=-170 \mu$ rad const.
vertical separation bump $\Delta y=2 \mathrm{~mm}$
This combination has to avoid encounters at any position.

$+/-5 \sigma$ beam envelope at IP8, injection, crosses mark the 25 ns encounters
Beams are separated at IP and the first par. encounters \#1 ... 3 due to vert. separation.

From par. encounter \#4 on the horizontal crossing bump has to do the job.


## Situation in IR8 at Injection:

## Horizontal plane: $\mathrm{LHCb}=\mathrm{BAD}$

beam 1 is deflected towards outer side of LHC, the compensators are bending back the orbit -> cross over !! and the external bump is used to deliver after the compensators sufficient separation at the parasitic encounters.

... for 25 ns bunch spacing parasitic collisions are unavoidable !!
$+/-5 \sigma$ beam envelope at IP8
Beams are crossing over between two 50ns encounters $x^{\prime}=+2.1 \mathrm{mrad}-170 \mu \mathrm{rad}=+1.93 \mathrm{mrad}$ cross over between two 50ns encounters.


## Swapping the Planes ... ?

The horizontal crossing angle bump always will have to fight against the bad LHCb polarity. A vertical crossing angle bump does not !

horizontal plane: LHCb = good
calculate orbits \& envelopes for

$$
\begin{aligned}
& \Delta x=2.0 \mathrm{~mm}, \\
& y^{\prime}=170 \mu \mathrm{rad}, \mathrm{LHCb}=\mathrm{on}=\mathrm{bad}
\end{aligned}
$$

vert. crossing angle separates the beams from encounter \#4
LHCb internal crossing angle separates the beams at \#2 ... \#5
$\Delta \mathrm{x}=2 \mathrm{~mm}$ separates the beams at $\# 1$ (i.e. IP)


The scheme works for any LHCb polarity and guarantees sufficient separation at ANY encounter !!

## But ...

LHC beam screen is not symmetric hor. / vert.

Aperture Model for present situation $n 1 \approx 7$



Aperture Model for swapped situation $n 1 \approx 4.5$


## III). Optimising $Y^{\prime}$ :

Using the mcbx coils to flatten the vert. crossing bump inside the triplet?
Reducing the crossing angle to the bare minimum ...


For $\varepsilon=3.0$, scanning the vertical crossing angle ... with slight optimism. on_xv $i=0.8=136 \mu \mathrm{rad}+$ LHC $b=108 \mu \mathrm{rad}$


## V) Aperture Scans

$$
\varepsilon=3.0 \mu \mathrm{rad}, y^{\prime}=108 \mu \mathrm{rad}
$$

LHC-Aperture, inj, en=3.0, cor=3.0, $y^{\prime}=0.8=108 \mathrm{murad}$


$\mathrm{forc}^{\mathrm{c}}{ }^{\mathrm{mp}}$
V) Aperture Scans: Optimistic Proposal:

$$
\varepsilon=3.0 \mu \mathrm{rad}, y^{\prime}=108 \mu \mathrm{rad}
$$

## cor $=2 \mathrm{~mm}$

LHC-Aperture, inj, en=3.0, cor=2.0, $\mathrm{y}^{\prime}=0.8=108 \mathrm{murad}$

V) ) Aperture Scans: Reference calculations proposed scheme

$$
\varepsilon=3.5 \mu \mathrm{rad}, y^{\prime}=108 \mu \mathrm{rad}
$$

cor $=4 \mathrm{~mm}$
LHC-Aperture, inj, en=3.5, cor=4.0, $y^{\prime}=0.8=108$ murad

V) Aperture Scans: Reference calculations: proposed scheme

$$
\varepsilon=3.5 \mu \mathrm{rad}, y^{\prime}=108 \mu \mathrm{rad}
$$

```
cor=3mm
```


V) Aperture Scans: himmi kreiz deifi no emol wie oft denn nocchchchch: proposed scheme

$$
\varepsilon=3.5 \mu \mathrm{rad}, \text { proposed scheme, } y^{\prime}=108 \mu \mathrm{rad}
$$

LHC-Aperture, inj, en=3.5, cor=2.0, $y^{\prime}=0.8=108$ murad
$\mathrm{cor}=2 \mathrm{~mm}$

V) Aperture Scans: Reference calculations:
nominal scheme

$$
\varepsilon=3.5 \mu \mathrm{rad}, x^{\prime}=170 \mu \mathrm{rad}
$$

cor $=4 m m$
LHCb pos

LHC-Aperture, inj, en=3.5, cor=4.0, $x^{\prime}=1.0=170$ murad

V) Aperture Scans: Reference calculations:
nominal scheme
$\varepsilon=3.5 \mu \mathrm{rad}$, nominal scheme, $x^{\prime}=170 \mu \mathrm{rad}$
cor=2mm
LHCb pos
LHC-Aperture, inj, en=3.5, cor=2.0, $x^{\prime}=1.0=170 \mathrm{murad}$

V) Aperture Scans: Reference calculations:
nominal scheme
$\varepsilon=3.5 \mu \mathrm{rad}, x^{\prime}=170 \mu \mathrm{rad}$

## cor $=4 \mathrm{~mm}$

## LHCb neg

## V) Aperture Scans: Reference calculations:

nominal scheme
$\varepsilon=3.5 \mu \mathrm{rad}, x=170 \mu \mathrm{rad}$
cor $=2 \mathrm{~mm}$

## LHCb neg

LHC-Aperture, inj, en=3.5, cor=2.0, $x^{\prime}=1.0=170$ murad


## Apertures

Referring to the IP settings of the bump: aperture limits obtained at $\Delta y \approx+/-11 \mathrm{~mm}$ corresponds to 17.8 mm at Q2.
Overall Aperture: $17.8 \mathrm{~mm}+4 \sigma=23.8 \mathrm{~mm} \times$
Compared to theoretical expected value: ... Beam Screen Geometry in IP8 hor * vert. $=29 \mathrm{~mm} * 24 \mathrm{~mm}$


Aperture Need:
$y^{\prime}=108 \mu \mathrm{rad}->\Delta y=6.8 \mathrm{~mm}$ at Q2
Overall Aperture Measured = 24 mm
In other words: applying $108 \mu \mathrm{rad}$ gives us still margin for 17 mm ... corresponding to $12 \sigma(\varepsilon=3.0)$

