
Upgrade of Makethin
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H. Burkhardt, LCU 19/04/2013

• TEAPOT slicing algorithm, extended to n > 4 as reported in LCU meeting 18/09/2012, 
working well,  described in contribution currently prepared for IPAC 2013

Here mainly discussing plans and preliminary tests for three further upgrade steps

• upgrade in functionality, allowing to turn off slicing by selection statements

• thick quadrupole slices

• automatic transfer of bending magnet fringe fields to dipedge elements

also major internal changes ( using C++ with standard library strings, vectors )
speed improvements, faster search for elements
internal changes should be transparent in standard use
option,debug=true; option,verbose=true; ! essential for development and debugging

Acknowledgment :      Thys Risselada,  Frank Schmidt
and  Riccardo De Maria, Massimo Giovannozzi, John Jowett, Laurent Deniau, Rogelio Tomas, Adriano Garonna



TEAPOT slicing
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Note, that for backward compatibility, default slicing goes to simple (equidistant) for n > 4.
Advice is to always use TEAPOT slicing,                     details see LCU 18/09/2012 and IPAC’13
makethin, sequence=lhcb1, style=teapot;

For same #slices, TEAPOT reduces the β - mismatch by 2 orders of magnitude
for the LHC;  10 × more slices required to get to similar precision with SIMPLE
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Upgrade in functionality
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select,flag=makethin,RANGE=range,CLASS=class,PATTERN=pattern[,FULL][,CLEAR],SLICE=#slices,thick=true;

default is slice=1, thick=false 

 

Turn off slicing by selection with a slice number < 1,  to just copy the thick element
select, flag=makethin, class=sextupole, slice=0; ! turn off slicing of all sextupoles

select, flag=makethin, pattern=mbxw\., slice=0;  ! keep mbxw dipoles thick

Thick slicing option, effective for quadrupoles and bends (ignored for others)

select, flag=makethin, class=quadrupole, thick=true , slice=2; ! thick quadrupole slices
select, flag=makethin, class= rbend, slice=1, thick=true; ! translates rbend to sbend +

 dipedge   for bends for the moment restricted to 1 thick slice  (is there demand for more ?)

     example, LHC triplet thick slicing
select, flag=makethin, pattern=mqxa\., slice=2, thick=true;
select, flag=makethin, pattern=mqxb\., slice=4, thick=true;

Selection works on the current sequence (from last  use, sequence = seqname ; )
The information thick = true or false and the number of slices selected for makethin is stored internally with each element



Thick quadrupole slicing

4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

sq sq

n = 1

n = 2

n = 3

n = 4

sq bq bq sq

Illustration of thick quadrupole slicing,  (using TEAPOT style).
For n-slices we have n-1 bq pieces, and always one start and end piece sq.

results same as original quadrupole
now possible to add multipoles / errors at transitions

dist. from centre in units
of thick quad length

n = 0    keeps the original single thick element



Thick quadrupole slices
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Tracking possible with thick bends & quads   (in principle)
Thin multipole-kicks required for higher orders
#slice < 1 just echoes the thick quadrupole
Now possible to produce n-thick quadrupole slices, can then insert multipole pieces as for thin

Example LHC
mqxa: quadrupole, l:=l.mqxa;
mqxa.1r1: mqxa, at = 26.150000, from = ip1,polarity:= 1. ,k1:=kqx.r1 + ktqx1.r1;

      makethin   with        select, flag=makethin, pattern=mqxa\., slice=2, thick=true;         Result (without slot,kmax.)

mqxa.1r1.sq: quadrupole,l:=( l.mqxa ) * ( 0.16666666666667 ) ,polarity:= 1,k1:=kqx.r1 + ktqx1.r1;
mqxa..1: multipole,lrad:=( l.mqxa ) / ( 2 );
mqxa.1r1..1: mqxa..1,lrad:=( l.mqxa ) / ( 2 ) ,polarity:= 1;
mqxa.1r1.bq: quadrupole,l:=( l.mqxa ) * ( 0.66666666666667 ) ,polarity:= 1,k1:=kqx.r1 + ktqx1.r1;
mqxa..2: multipole,lrad:=( l.mqxa ) / ( 2 )  ;
mqxa.1r1..2: mqxa..2,lrad:=( l.mqxa ) / ( 2 ) ,polarity:= 1,;

placed at
mqxa.1r1.sq, at = ( 26.15 ) + ( ( l.mqxa ) * ( 0 - 0.41666666666667 ) ) , from = ip1;
mqxa.1r1..1, at = ( 26.15 ) + ( ( l.mqxa ) * ( 0 - 0.33333333333333 ) ) , from = ip1;
mqxa.1r1.bq, at = ( 26.15 ) + ( ( l.mqxa ) * ( 0  ) ) , from = ip1;
mqxa.1r1..2, at = ( 26.15 ) + ( ( l.mqxa ) * ( 0.33333333333333 ) ) , from = ip1;
mqxa.1r1.sq, at = ( 26.15 ) + ( ( l.mqxa ) * ( 0.41666666666667 ) ) , from = ip1;



sbend, rbend, dipedge
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θ = 2α

α = θ/2

α

θ

ρ rbendsbend

more generally
bend with extra entry exit angle

rbend special case
where the extra angle
is half of the bending angle

general bend with fringe fields =

left dipedge   ×    sbend without fringe fields   ×    right dipedge

product of two matrices, a rotation and a focusing matrix of the form
0
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see [78] on p. 30.

bending magnets

See Chao Tigner handbook [79] p.58 ff for the transfer matrix of a the general case wedge bending
magnet, characterized by the bending radius ⇢, and pole face curvatures and rotations.

A dipole magnet produces a circular curvature which is taken into account as new equilibrium
orbit (change of coordinate system) in the horizontal (bending) plane ?

See the mad8 physics guide p. 21 in pdf. Here, the Lie-Algebraic maps of the dipole bringing
fields have matrix elements of the form h tan 

i

, with reference to [62] and [83] which describes the
transport map of a combined function dipole to first and second order.

Following here the idea used in MAD-X that a general bend can be obtained from a sector
bend and edge focusing. First separated in H for ( x , x 0, �) and V for (y,y’) which can be useful for
pedagogic discussions, then together in 6 dimensions. See my BendingMagnet.nb. The pole faces
meet at the centre of the curvature of the SBEND. See also the MAD-X manual, or on the web
bending magnets, rbend/sbend, dipedge. The SBEND magnet has two main parameters, the length
L and the bending angle ✓, where L = ⇢✓ (SBEND), for the bending radius ⇢. For an RBEND,
L = 2⇢ sin ✓/2. Compared to the SBEND, the RBEND length is reduced by

Lrbend

Lsbend
=

2 sin ✓

2

✓
= 1 �✓2

24
+

✓4

1920
�.. (8.64)

see BendingMagnet.nb.
A positive bend angle represents a bend to the right, i.e. towards negative x values. In the more

general case, we allow for an angle ↵ between the path and the normal at the entrance and exit of the
magnet. The SBEND corresponds to the general case for ↵ = 0 and the RBEND for ↵ = ✓/2, see
Fig. 12.
MAD variable names are h for the curvature h = 1/⇢ = ✓/L,
e 1, e 2 or ”edge” for the edge focussing angle ↵.
For an SBEND, ↵ = 0

MH,SBEND =

0

BBBB@

cos ✓ ⇢ sin ✓ ⇢ (1 �cos ✓)

�sin ✓

⇢

cos ✓ sin ✓

0 0 1

1

CCCCA
MV =

✓
1 ⇢ ✓
0 1

◆
=

✓
1 L
0 1

◆
(8.65)

which is just a drift in y of length L = ⇢ ✓. Combined to 6-dimensions

MSBEND(⇢, ✓) =

0
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Comment on practical challenges in changing MAD-X code
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Example : bend to dipedge-sbend-dipedge conversion.   Idea is
move any nonzero e1 from bend to e1 of new   left dipedge element
move any nonzero e2 from bend to e1 of new right dipedge element
for rbend create always dipedges left/right and add angle/2 to e1’s of dipedges
change rbend keyword to sbend

in present MAD-X this is very complicated
Many levels of c-structures with pointers to c-structures and use of global variables
(rather than well defined objects)
Attributes can be pointers to expressions w/o value or value, if not given taken from parent .. base_type
Elements defined in several steps and re-used in many places :  Work with “clones” and keep
the original information. At the end add location information to elements and place them as nodes in the 
sliced sequence.
No sanity check / garbage collection.  Easy to end up in situation where twiss of the sliced sequence 
after makethin gets one result and reading back the sliced sequence another result.

Deal automatically with special options
rbarc (default=true), on input L = straight length, what is needed for optics, was default in MAD8 and can be 
given as input with rbarc=false is the curved length which is longer by  angle / (2 sin ( angle /2 ))
translate any straight length value or expression to the curved length, at (central position) same
start/end position (end normally used in twiss) modified --   can be very confusing

Code now  mad_mkthin.cpp,   internal global stuctures thin_lookup, thin_sequ_lookup removed,
required information now part of objects (C++ classes) within  makethin
grown from 1500 to 2300 lines densely written code, of order 20% for debug printing and statistics



Automatic transfer of bending magnet fringe field to dipedge
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As described in the makethin documentation dipedge should be used to take care of the edge fields
of dipoles which are otherwise lost in slicing.
Proposal for upgraded makethin : by default split off automatically any edge focusing to new 
dipedge.  No dipedge for sbends generated in case of e1=0).

Example,  from original thick
mb1: sbend, L:=l ,Angle:=ang ,K1:= k1 , E1:= e1 , E2:= e2, hgap := gap, fint:= fin ;
!  

to sliced version after makethin
mb1.edge_l: dipedge, h:= ang/l, E1:= e1, hgap := gap, fint:= fin ; ! new dipedge at start
mb1: sbend,l:=l , Angle:=ang , K1:= k1 ;                   ! bend with edge effects removed
mb1.edge_r: dipedge, h:= ang/l, E1:= e2, hgap := gap, fint:= fin ;  ! new dipedge at end

after thin slicing, the bend becomes
mb1: multipole,lrad:=l ,knl:={ ang , k1 * l };

In case of rbend,  automatically adds  angle/2 to e1 of dipedge
Other non-default settings present in bend are transferred to dipedge :
polarity, tilt, mech_sep, v_pos, magnet, model, method, exact, nst

  slicing option, examples
select, flag=makethin, rbend, thick=true; ! keep translated rbend thick
   or,
select, flag=makethin, rbend, slice=4; ! 4 multipoles slices (with dipedge)

http://mad.home.cern.ch/frs/mad-X_examples/makethin/
http://mad.home.cern.ch/frs/mad-X_examples/makethin/


Single thin bend slices, LHC, no dipedge
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Single thin bend slices, LHC, with dipedge
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β - mismatch, completely negligible in y     (no bending in y)
Reduced by factor of 20 in x, and converging with #slices
Essential for slicing in small machines -   example LEIR --->



LEIR
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Optics files received from 
Adriano Garonna on 13/11/2012
No RBEND, no OCTUPOLES

L = 78.544 m
Qx = 1.667, Qy = 2.720
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LEIR thin,  4 Quadrupole, 2 bend, 1 sextupole slices, TEAPOT, dipedge on

mean = 0.31 × 10-3     max = 0.93 × 10-3

With dipedge generation on, tunes restored
4 quadrupole and 2 bend slices
get the mismatch below 10-3

increases to mean 3.8%, peak 16 % with 1 thin bend slice



Concluding remarks
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TEAPOT slicing works very well,  for n slices, the mismatch decreases as  ~ 1/n2

The gain for quadrupoles, which are (by far) the main source of mismatch is very significant
--- described in contribution to IPAC’13

when selected, TEAPOT is applied to all elements - convergence there as equidistant
Sextupoles, Octupoles - slicing anyway no issue, mismatch from single slice  <   10-3

Request / proposal to further enhance makethin ( in α-testing† ) :
• echoing selected elements as thick  when #slice < 1
• optionally thick quadrupole slice generation
• automatic dipedge generation for bends, and rbend to sbend generation

improves (the already sufficiently small) mismatch from bend slicing in the LHC
essential for small machines

 † instructions for testing, on lxplus:
   make sure you have access to gcc4.6 libraries
export GCCVERSION=4.6 ; export SPI_PLATF=x86_64-slc5-gcc46-opt ; source /afs/cern.ch/sw/lcg/contrib/gcc/4.6/$SPI_PLATF/setup.sh         bash
setenv GCCVERSION 4.6 ; setenv SPI_PLATF x86_64-slc5-gcc46-opt ; source /afs/cern.ch/sw/lcg/contrib/gcc/4.6/$SPI_PLATF/setup.csh        tcsh
   now run madx64 from my public
~hbu/public/madx64
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Backup



Matrices
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θ

ρ

θ = 2α

α = θ/2

α

Figure 12: Sector magnet (left, SBEND in MAD-X) and rectangular magnet (right, RBEND in
MAD-X)

The more general case with extra angle ↵ is obtained by multiplication at the entrance and exit
with the edge focusing matrix

Medge(⇢,↵) =

0
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0 0 � tan↵

⇢

1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1
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(8.67)

which is equivalent to a defocusing (in x, focusing in y) thin lens quadrupole with K2L = 1/f =
� tan↵

⇢

, see Eq. 8.50. For the general bend we get

MBEND(⇢, ✓,↵) = Medge MSBENDMedge =
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(8.68)
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using simple notation (agrees with Mad-X for β=1)

product of two matrices, a rotation and a focusing matrix of the form
0
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see [78] on p. 30.

bending magnets

See Chao Tigner handbook [79] p.58 ff for the transfer matrix of a the general case wedge bending
magnet, characterized by the bending radius ⇢, and pole face curvatures and rotations.

A dipole magnet produces a circular curvature which is taken into account as new equilibrium
orbit (change of coordinate system) in the horizontal (bending) plane ?

See the mad8 physics guide p. 21 in pdf. Here, the Lie-Algebraic maps of the dipole bringing
fields have matrix elements of the form h tan 

i

, with reference to [62] and [83] which describes the
transport map of a combined function dipole to first and second order.

Following here the idea used in MAD-X that a general bend can be obtained from a sector
bend and edge focusing. First separated in H for (x, x0, �) and V for (y,y’) which can be useful for
pedagogic discussions, then together in 6 dimensions. See my BendingMagnet.nb. The pole faces
meet at the centre of the curvature of the SBEND. See also the MAD-X manual, or on the web
bending magnets, rbend/sbend, dipedge. The SBEND magnet has two main parameters, the length
L and the bending angle ✓, where L = ⇢✓ (SBEND), for the bending radius ⇢. For an RBEND,
L = 2⇢ sin ✓/2. Compared to the SBEND, the RBEND length is reduced by

Lrbend

Lsbend
=

2 sin ✓

2

✓
= 1� ✓2

24
+

✓4

1920
� .. (8.64)

see BendingMagnet.nb.
A positive bend angle represents a bend to the right, i.e. towards negative x values. In the more

general case, we allow for an angle ↵ between the path and the normal at the entrance and exit of the
magnet. The SBEND corresponds to the general case for ↵ = 0 and the RBEND for ↵ = ✓/2, see
Fig. 12.
MAD variable names are h for the curvature h = 1/⇢ = ✓/L,
e1, e2 or ”edge” for the edge focussing angle ↵.
For an SBEND, ↵ = 0

MH,SBEND =

0
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⇢
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1
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✓
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◆
(8.65)

which is just a drift in y of length L = ⇢ ✓. Combined to 6-dimensions

MSBEND(⇢, ✓) =

0
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Dipedge

Thick
SBEND
no fringe

With cos iKL = coshKL, �i sin iKL = sinhKL we can also write, which is the same expression
as K

f

with K ! �iK

K
d
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✓
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◆
(8.45)
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(8.46)

In 6 dimensions

Mquad(K,L) =

0
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This matrix is symplectic (shown in ThinLensQuadrupole.nb). The Taylor expansion of this matrix
(or rather its Matrix elements) instead is not symplectic, see TeapotSlices2dim.nb.

The thins lens version of a quadrupole is (formally by L ! 0, or here just cos ! 1, sinKL

K

! 0,
K sinKL remains as 1/f ), not exactly same as power expansion, see ThinLensQuadrupole.nb. The
thin version of a thick quadrupole is the product of a thin quadrupole and the drift space. The thin
quadrupole alone is 0
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0 0 1 0 0 0
0 0 g(s0)�s 1 0 0
0 0 0 0 1 0
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1

CCCCCCA
. (8.48)

It can be obtained from a Jacobian matrix, see [78] on p. 17.
Thin lens quadrupole, from Chao Tigner handbook p. 57
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with sinKL ⇡ KL this becomes
0
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Note that the x and y sub-matrices are the same except for the sin in x and the sinh in y.
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Thick
Quadrupole

All symplectic


