@ H. Burkhardt, LCU 19/04/2013
\
z.‘] Upgrade of Makethin

e TEAPOT slicing algorithm, extended to n > 4 as reported in LCU meeting 18/09/2012,
working well, described in contribution currently prepared for IPAC 2013

Here mainly discussing plans and preliminary tests for three further upgrade steps
¢ upgrade in functionality, allowing to turn off slicing by selection statements
¢ thick quadrupole slices

¢ automatic transfer of bending magnet fringe fields to dipedge elements

also major internal changes (using C++ with standard library strings, vectors)
speed improvements, faster search for elements
internal changes should be transparent in standard use

option,debug=true; option,verbose=true; ! essential for development and debugging

Acknowledgment : Thys Risselada, Frank Schmidt

and Riccardo De Maria, Massimo Giovannozzi, John Jowett, Laurent Deniau, Rogelio Tomas, Adriano Garonna

@V TEAPOT slicing

Note, that for backward compatibility, default slicing goes to simple (equidistant) for n > 4.

Advice is to always use TEAPOT slicing, details see LCU 18/09/2012 and IPAC’13
makethin, sequence=lhcbl, style=teapot;

5
10 SIMPLE (equidistant) plot from
, Thys Risselada
el 10 for
& 03 LHC MQ
S TEAPOT main quads
<
£
2 102
S
enl
O
& 10!
O
=
109
10_1 L1

number of slices

For same #slices, TEAPOT reduces the 3 - mismatch by 2 orders of magnitude
for the LHC; 10 x more slices required to get to similar precision with SIMPLE

A

@\ Upgrade in functionality ¢ w

select, flag=makethin, RANGE=range,CLASS=class, PATTERN=pattern[,FULL] [,CLEAR],SLICE=#slices,thick=true;

default 1s slice=1, thick=false

Turn off slicing by selection with a slice number < 1, to just copy the thick element

select, flag=makethin, class=sextupole, slice=0; ! turn off slicing of all sextupoles

select, flag=makethin, pattern=mbxw\., slice=0; ! keep mbxw dipoles thick

Thick slicing option, effective for quadrupoles and bends (ignored for others)

select, flag=makethin, class=quadrupole, thick=true , slice=2; ! thick quadrupole slices
select, flag=makethin, class= rbend, slice=1, thick=true; ! translates rbend to sbend +

dipedge for bends for the moment restricted to 1 thick slice (is there demand for more ?)

example, LHC triplet thick slicing

select, flag=makethin, pattern=mqgxa\., slice=2, thick=true;
select, flag=makethin, pattern=mgxb\., slice=4, thick=true;

Selection works on the current sequence (from last use, sequence = segname ;)
The information thick = true or false and the number of slices selected for makethin is stored internally with each element

Thick quadrupole slicing

n=0 keeps the original single thick element

=
1
[

=
Il
[\°]

=
1
w

=
1}
A

|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII| dlSt'fromcentrelnunltS

05 -04 -03 02 -01 O 0.1 02 03 04 05 ofthickquadlength

Ilustration of thick quadrupole slicing, (using TEAPOT style).
For n-slices we have n-1 bq pieces, and always one start and end piece sq.
results same as original quadrupole
now possible to add multipoles / errors at transitions

Thick quadrupole slices

Tracking possible with thick bends & quads (in principle)
Thin multipole-kicks required for higher orders
#slice < 1 just echoes the thick quadrupole

Now possible to produce n-thick quadrupole slices, can then insert multipole pieces as for thin

Example LHC
mgxa: quadrupole, l:=1.mqgxa;
mgqgxa.lrl: mgxa, at = 26.150000, from = ip1 polarity:= 1. k1l:=kqgx.rl + ktqx1.rl;

makethin with select, flag=makethin, pattern=mqxa\., slice=2, thick=true; Result (without slot,kmax.)

mgxa.lrl.sq: quadrupole,l:=(.mgxa) * (0.16666666666667) ,polarity:= 1,k1:=kqgx.rl + ktgx1.rl;
mgxa..1: multipole lrad:=(I.mgxa) / (2);

mgxa.lrl..1: mgxa..1 lrad:=(l.mgxa) / (2) ,polarity:= 1;

mgqxa.lrl.bqg: quadrupole,l:=(1.mgxa) * (0.66666666666667) ,polarity:= 1.k1:=kgx.rl + ktgx1.rl;
mgxa..2: multipole Irad:=(l.mgxa)/ (2) ;

mgxa.lrl..2: mgxa..2 lrad:=(I.mgxa) / (2) ,polarity:=1,;

placed at
mgxa.1lrl.sq, at = (26.15) + ((l.mgxa) * (@ — 0.41666666666667)) , from = ipl;
mgxa.1lrl..1, at = (26.15) + ((l.mgxa) * (@ - ©0.33333333333333)) , from = ipl;
mgxa.1lrl.bq, at = (26.15) + ((l.mgxa) x (@)) , from = ipl;
mgxa.1lrl..2, at = (26.15) + ((l.mgxa) * (0.33333333333333)) , from = ipl;
mgxa.1lrl.sq, at = (26.15) + ((l.mgxa) *x (0.41666666666667)) , from = ipl;

sbend, rbend, dipedge “

— . more generally

bend with extra entry exit angle

! S rbend special case
rbend where the extra angle
' is half of the bending angle

Lrbend _ 2sin 4 - 6% . 04 “
I—sbend 0 24 1920

general bend with fringe fields =

left dipedge x sbend without fringe fields x right dipedge

@\ Comment on practical challenges in changing MAD-X code ¢ w

th ~ S2) .

Example : bend to dipedge-sbend-dipedge conversion. Idea is
move any nonzero el from bend to el of new left dipedge element
move any nonzero €2 from bend to el of new right dipedge element
for rbend create always dipedges left/right and add angle/2 to el’s of dipedges
change rbend keyword to sbend

in present MAD-X this is very complicated

Many levels of c-structures with pointers to c-structures and use of global variables
(rather than well defined objects)
Attributes can be pointers to expressions w/o value or value, if not given taken from parent .. base_type
Elements defined in several steps and re-used in many places : Work with “clones” and keep
the original information. At the end add location information to elements and place them as nodes in the
sliced sequence.

No sanity check / garbage collection. Easy to end up in situation where twiss of the sliced sequence
after makethin gets one result and reading back the sliced sequence another result.

Deal automatically with special options
rbarc (default=true), on input L = straight length, what is needed for optics, was default in MAD8 and can be
given as input with rbarc=false is the curved length which is longer by angle / (2 sin (angle /2))
translate any straight length value or expression to the curved length, at (central position) same
start/end position (end normally used in twiss) modified —— can be very confusing

Code now mad_mkthin.cpp, internal global stuctures thin_lookup, thin_sequ_lookup removed,
required information now part of objects (C++ classes) within makethin
grown from 1500 to 2300 lines densely written code, of order 20% for debug printing and statistics

As described in the makethin documentation dipedge should be used to take care of the edge fields

of dipoles which are otherwise lost in slicing.
Proposal for upgraded makethin : by default split off automatically any edge focusing to new
dipedge. No dipedge for sbends generated in case of e1=0).

Example, from original thick
mbl: sbend, L:=1 ,Angle:=ang ,Kl:= k1l , El:= el , E2:= e2, hgap := gap, fint:= fin ;

to sliced version after makethin
mbl.edge 1l: dipedge, h:= ang/l, El:= el, hgap := gap, fint:= fin ; !new dipedge at start
mbl: sbend,l:=1 , Angle:=ang , Kl:= k1l ; ! bend with edge effects removed
mbl.edge r: dipedge, h:= ang/l, El:= e2, hgap := gap, fint:= fin ; !new dipedge at end

after thin slicing, the bend becomes
mbl: multipole,lrad:=1 ,knl:={ ang , k1l *x 1 };

In case of rbend, automatically adds angle/2 to el of dipedge

Other non-default settings present in bend are transferred to dipedge :

polarity, tilt, mech_sep, v_pos, magnet, model, method, exact, nst
slicing option, examples

select, flag=makethin, rbend, thick=true; ! keep translated rbend thick
or,
select, flag=makethin, rbend, slice=4; ! 4 multipoles slices (with dipedge)

http://mad.home.cern.ch/frs/mad-X_examples/makethin/
http://mad.home.cern.ch/frs/mad-X_examples/makethin/

[ppm]

(B_ref - B_sliced) / B_ref

Single thin bend slices, LHC, with dipedge

30 LHC nominal collision optics, slicing bending magnets, 1 thin slice

20

10

o
T T T 1 T T T 11
1
>
%

;‘EL;

-10
|
mean = 5.8 ppm max = 28 ppm
_30 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
0 5000 10000 15000 20000 25000

s [m]

B - mismatch, completely negligible iny (no bending in y)
Reduced by factor of 20 in x, and converging with #slices

Essential for slicing in small machines - example LEIR --->

10

Optics files received from

Adriano Garonna on 13/11/2012
No RBEND, no OCTUPOLES

L=78544m
Qx = 1.667, Qy = 2.720

Without dipedges twiss fails, With dipedge generation on, tunes restored
’s here by twiss with initial values 4 quadrupole and 2 bend slices
AQ1 =0.229, AQ2 =-0.033 get the mismatch below 10-3
E 30:_ :x:hh:c: 1__ LEIR thin, 4 Quadrupole, 2 bend, 1 sextupole slices, TEAPOT, dipedge on
2 f_ g 05
20 R
15 g o
2 [
10+ o -
: i—O.S—
S - L
- B mean=0.31x 103 max =0.93 x 10-3
0_) - _1—r||||||||||||||||||||||||||||||||||||||
0 s [m] 0 10 20 30 40 50 60

s [m]

increases to mean 3.8%, peak 16 % with 1 thin bend slice 11

@\ Concluding remarks

TEAPOT slicing works very well, for n slices, the mismatch decreases as ~ 1/n2
The gain for quadrupoles, which are (by far) the main source of mismatch is very significant
--- described in contribution to IPAC’13

when selected, TEAPOT is applied to all elements - convergence there as equidistant
Sextupoles, Octupoles - slicing anyway no issue, mismatch from single slice < 10-3

Request / proposal to further enhance makethin (in a-testing’) :

¢ cchoing selected elements as thick when #slice < 1

e optionally thick quadrupole slice generation

¢ automatic dipedge generation for bends, and rbend to sbend generation
improves (the already sufficiently small) mismatch from bend slicing in the LHC
essential for small machines

Tinstructions for testing, on Ixplus:

make sure you have access to gcc4.6 libraries

export GCCVERSION=4.6 ; export SPI_PLATF=x86_64-slc5-gcc46-opt ; source /afs/cern.ch/sw/lcg/contrib/gcc/4.6/$SPI_PLATF/setup.sh bash
setenv GCCVERSION 4.6 ; setenv SPI_PLATF x86_ 64-slc5-gccd46-opt ; source /afs/cern.ch/sw/lcg/contrib/gcc/4.6/$SPI_PLATF/setup.csh tcsh
now run madx64 from my public

~hbu/public/madx64

12

Backup

Matrices

(1 0 0 000
tago‘ 1 0 000
0 0 1 000 :
Medge(pa Oé) - 0 0 — tan o 1 0 0 Dlpedge
P
0 0 0 010
\ 0 0 0 0 0 1
(cos 0 psind 0 0 0 p(1—cosb) \
—% cos 0 0 0 O sin 0
0 0 1 6p 0O 0
e 0 01 0 0
—sinf —p(l—cosf) 0 0O 1 —p(0—sinb)
K 0 0 0 0 O 1
cos KL skl 0 0 0 0\
—Ksin KL cos KL 0 0 0 0
0 0 coshKL ~ =mbEL
Mauaa (K, L) = 0 0 —KsinhKL coshKL 0 0
0 0 0 0 1 7%
\ 0 0 0 0 0 1)

using simple notation (agrees with Mad-X for $=1)

Thick
SBEND

no fringe

Thick
Quadrupole

All symplectic

14

