LHCb crossing scheme for Run II \& III

S. Fartoukh BE/ABP

Acknowledgements: M. Lamont, R. Lindner, B. Schmidt, R. Versteegen
\rightarrow Description of the problem and boundary conditions
\rightarrow Complete solutions for

- Injection
- Ramp
- Flat top or end of squeeze
\rightarrow Conclusions (... please do NOT rotate the IT beam-screen in IR8)

The problem

\rightarrow In a scenario where the LHCb spectrometer is not ramped (i.e. full strength from 450 GeV to 6.5 TeV), establish functions for the external crossing scheme which
0) With an external crossing angle always <0 for beam1 (for the H plane only to avoid head-on collisions in D1).

1) Does not depend on the polarity of the LHCb spectrometer
2) Fulfills the aperture requirements at injection (triplet and beam pipe)
3) Warrants enough beam-beam separation ($\geq 10 \sigma$), for ANY bunch spacing, e.g. 25 ns ($20+5 \mathrm{~ns}, .$.) or in the presence of moving LR encounters (P-Pb run, RF cogging)
\rightarrow Assumption and method
4) Nominal beam emittances ($3.75 \mu \mathrm{rad}$)
5) Aperture evaluated with the conservative $\mathbf{n 1}$ approach with design tolerances (20% β-beat, 4 mm closed orbit budget), i.e. a "raw aperture" of about 13σ for $\mathrm{n} 1=7$ in the IT, and up to 30σ for $n 1=10$ in the experimental beam pipe.

The 2012 running scenario and

immediate conclusions for 450 GeV

- LHCb spectro full strength and both polarities:
$\rightarrow+/-2.1 \mathrm{mrad}$ at the IP at 450 GeV , leading to +/- 10 mm H orbit excursion at $+/ \mathbf{5 m}$ from the IP !

\rightarrow Any HORIZONTAL parallel separation, typically of a few mm , will systematically vanish at 450 GeV on one side at a few meters from the IP, where any hypothetical VERTICAL external crossing angle, typically of 150-200 $\mu \mathrm{rad}$ would be too small to generate enough bb separation at 450 GeV (... not mentioning IT aperture for vertical crossing)
\rightarrow The parallel separation can only be vertical at injection, as nominal
\rightarrow The external crossing angle can only be horizontal at injection, as nominal
Please do NOT rotate the IT beam-screen in IR8!
\rightarrow A few illustrations with "bad" (>0) spectrometer polarity a) Case 1: Nominal with H external crossing ($-170 \mu \mathrm{rad}$ for beam1), and V parallel separation (-2 mm for beam1)
b) Case 2: Just to try with V external crossing ($170 \mu \mathrm{rad}$ for beam1), and H parallel separation (+2 mm for beam1)

External crossing bumps for Cases 1 and 2 (spectrometer switched off for clarity of the plots)

H, V and radial bb sep $[\sigma]$ at 450 GeV till Q1 (+/-23 m)

Case 1: V||, H-X,"bad" polarity

Case 2: H||, V-X, "bad" polarity ... similar for "good" polarity

\rightarrow Already not that bad !

... with only a short zone at about 7.5σ (for worst polarity only)
\rightarrow Does NOT work for $\mathbf{P}-\mathrm{Pb}$ (head-on expected with moving LR encounters).
\rightarrow Still not easy for 25 ns proton run: the min. will drift during the ramp and coincide with the first 25 ns LR at $\sim 1.6 \mathrm{TeV}$ with $\sim 7.5 \sigma$ bb separation at cst V external X -angle so gymnastic needed anyway

Quick inspection (anyway) of the IT aperture

... I would not risk

Solution at Injection (1/4)

- Step 1: Increase the V parallel sep. from +/- $2 \mathbf{~ m m}$ to +/- 3.5 mm

Solution at injection (2/4)

- Step 2: Add a small V crossing angle (-30 $\mu \mathrm{rad}$), with same sign for both beams (no impact on the bb sep.) to recover the full IT aperture

Solution at injection (3/4)

\rightarrow A radial 10σ beam-beam sep. can be preserved for both polarities of the spectrometer, nominal emittance and any bunch spacing (in particular moving LRs with P-Pb at 450 GeV) GeV)

Negative ("good") polarity

Positive ("bad") polarity

The min. of course still exists but "safe" thanks to the parallel separation.

Solution at injection (4/4)

\rightarrow Experimental beam pipe aperture looks also very OK!

1) $\mathbf{n 1}=13.7$ for the existing beam pipe ($\sim 37 \sigma$ raw aperture)
2) $\mathbf{n 1}=\mathbf{1 0 . 3}$ for the postLS2 beam pipe ($\sim \mathbf{3 1} \boldsymbol{\sigma}$ raw aperture)

Courtesy of M. Giovannozzi

Solution for the ramp

\rightarrow Very similar to 2012 since most of the bb sep. in the zone of the spectrometer bump is provided by the parallel sep.

- external (H) crossing angle linearly increased up to $250 \mu \mathrm{rad}$
\rightarrow MCBX/Y/C strength checked and found OK up to 7 TeV
\rightarrow Aperture checked and found OK (n1~10 at $\beta^{*}=3 \mathrm{~m}$)
- Parallel sep (V) reduced linearly with time down to +/- 1 mm
- Small (V) tilt angle (for IT aperture) linearly switched off

IP8 parameters for beam1/2 (external bump only)	New 450 GeV setting (2012 settings)	End of Ramp @ 6.5 TeV (2012 settings)
$\mathrm{x}^{*}[\mathrm{~mm}]$	$0 / 0(0 / 0)$	$0 / 0(0 / 0)$
$\mathrm{px}^{*}[\mu \mathrm{rad}]$	$-170 /+170(-170 /+170)$	$-250 /+250(-220 /+220)$
$\mathrm{y}^{*}[\mathrm{~mm}]$	$-3.5 /+3.5(-2.0 /+2.0)$	$-1.0 /+1.0(-0.65 /+0.65)$
$\mathrm{py}^{*}[\mu \mathrm{rad}]$	$-30 /-30(0 / 0)$	$0 / 0(0 / 0)$
$5 / 22 / 2013$	S. Fartoukh, LCU meeting	

Gymnastic at 6.5 TeV for V external crossing

\rightarrow Could be similar to 2012 (see R. Alemany et al. IPAC13)
\rightarrow But is it really needed even down to $\beta^{*}=3 \mathrm{~m}$ at IP8:

"Good" polarity
+/- 395 urad internal half X -anges.

"Bad" polarity

+ - $105 \mu \mathrm{rad}$ internal half X-angle but still very comfortable!

Conclusions

\rightarrow It is (already almost) working, do not fix it with a V external crossing at injection, which does not work for $\mathrm{P}-\mathrm{Pb}$ runs, and only displaces the complexity and the risk from flat top to injection and ramp.
\rightarrow Just a little bit more V parallel separation would do the job at injection, with some external bump sophistication.
\rightarrow...and (maybe) a reiteration of the 2012 IR8 gymnastic at flat top, should an asymmetry by $\sim 290 \mu \mathrm{rad}$ ($@ 6.5 \mathrm{TeV}$) be a problem for LHCb data taking when changing the polarity of the spectrometer.
\rightarrow In ALL cases, rotating the IT beam-screen in IR8 could only made things worst, if not unmanageable.

