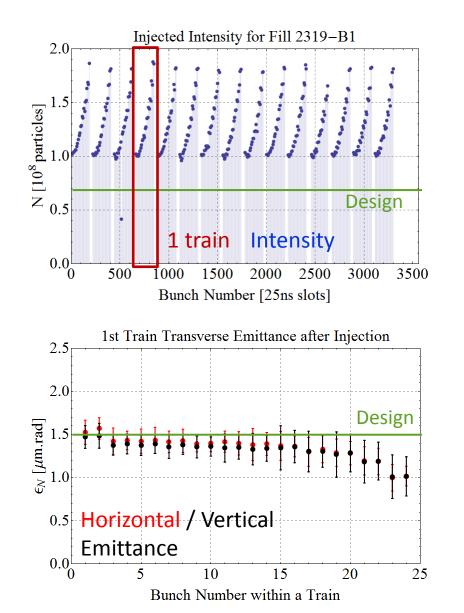
Optimization of the Filling Scheme for Ions in the LHC

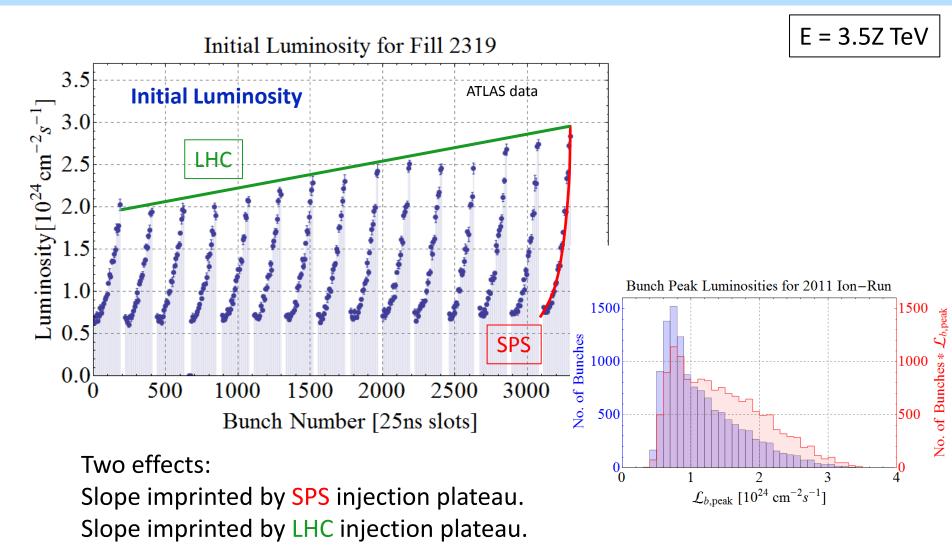

Michaela Schaumann

28th October 2013 LCU- Meeting, CERN

Outline

- Bunch-by-Bunch Differences in the LHC.
- Empirical Model to Predict Peak Luminosities per Bunch.
- Optimum Filling Schemes for after LS1 and LS2.
- Instantaneous and Integrated Luminosity Evolution for Selected Scenarios.

Bunch-by-Bunch Differences after Injection in the LHC


- Structure within a train (1st to last bunch):
 - increase: intensity

- bunch length

- decrease: emittance.
- IBS, space charge, RF noise ... at the injection plateau of the SPS:
 - while waiting for the 12 injections from the PS to construct a LHC train.
- First injections sit longer at low energy
 → strong IBS,
 - → emittance growth and particle losses.

E = 450 Z GeV

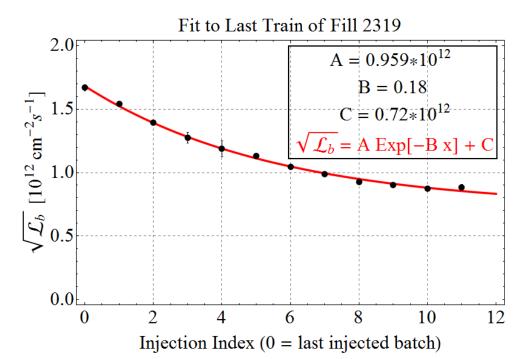
Bunch-by-Bunch Luminosity

 \rightarrow <u>Last train</u> does not see degradation due to LHC injection plateau.

 \rightarrow Cleanest picture of what happens "to the luminosity" in the SPS.

Parametrisation of Degradation in the **SPS**

- Take ATLAS bunch-by-bunch luminosity data of last train injected into LHC.
- Invert order of the bunches.
 → time evolution
- Average over bunches of one PS batch.
- Take square root of the data, since: $\sqrt{\mathcal{L}} \propto N_b/\sqrt{\epsilon}$


for equal colliding bunches (as is approx. the case in ATLAS):

$$N_b = N_{b1} = N_{b2}$$

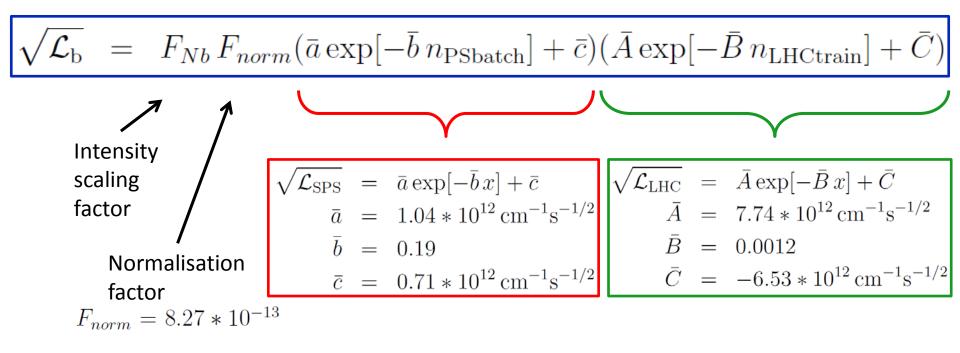
$$\epsilon = \epsilon_1 = \epsilon_2$$

• Fit an exponential of the form:

$$\sqrt{\mathcal{L}} = A \exp[-B x] + C$$

Average over all proper fills of 2011

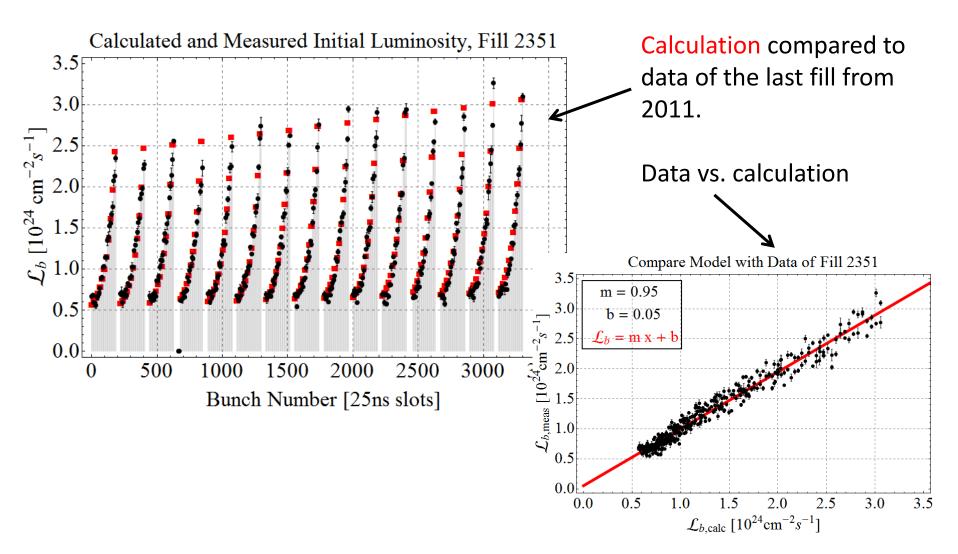
$$\sqrt{\mathcal{L}_{SPS}} = \bar{a} \exp[-\bar{b} x] + \bar{c}
\bar{a} = 1.04 * 10^{12} \,\mathrm{cm}^{-1} \mathrm{s}^{-1/2}
\bar{b} = 0.19
\bar{c} = 0.71 * 10^{12} \,\mathrm{cm}^{-1} \mathrm{s}^{-1/2}$$


Parametrisation of Degradation in the LHC

- Group bunches of equivalent PS batches (nth PS batch) from all trains, which saw the same SPS injection plateau length.
- Invert the order \rightarrow time evolution.
- Fit an exponential of the same form as before: $\sqrt{\mathcal{L}} = A \exp[-Bx] + C$
- Result: 12 fits with different decay speed due to different brightness's of the bunches.
- Simplification: 1 curve that describes all of them.
- > Two possibilities:
 - 1) Average fit parameters of all curves.
 - 2) Take fit of average bunch.
- > Number 2) is in better agreement with the data.

Average over all proper fills of 2011

$$\sqrt{\mathcal{L}_{LHC}} = \bar{A} \exp[-\bar{B} x] + \bar{C}
\bar{A} = 7.74 * 10^{12} \,\mathrm{cm}^{-1} \mathrm{s}^{-1/2}
\bar{B} = 0.0012
\bar{C} = -6.53 * 10^{12} \,\mathrm{cm}^{-1} \mathrm{s}^{-1/2}$$


Complete Parametrisation

Only takes variations due to SPS and LHC into account. LEIR, PS are assumed to have cycles similar as in 2011.

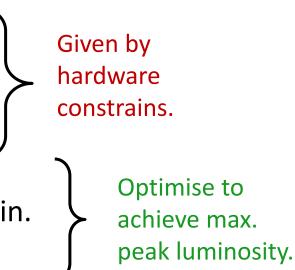
Validation of the Parametrisation

$\sqrt{\mathcal{L}_{\rm b}} = F_{Nb} F_{norm} (\bar{a} \exp[-\bar{b} n_{\rm PSbatch}] + \bar{c}) (\bar{A} \exp[-\bar{B} n_{\rm LHCtrain}] + \bar{C})$

Estimates

Linear parameter scaling w.r.t. 2011 parameters:

- 1. Number of particles per bunch N_b
- 2. Energy *E*
- 3. β^*


Vary injection scheme:

Free parameters:

- 1. Number of bunches per PS batch. (*Constrain: 2011 PS cycle length*)
- 2. Spacing PS.
- 3. Spacing SPS.
- 4. Spacing LHC: assumed to be 900ns.

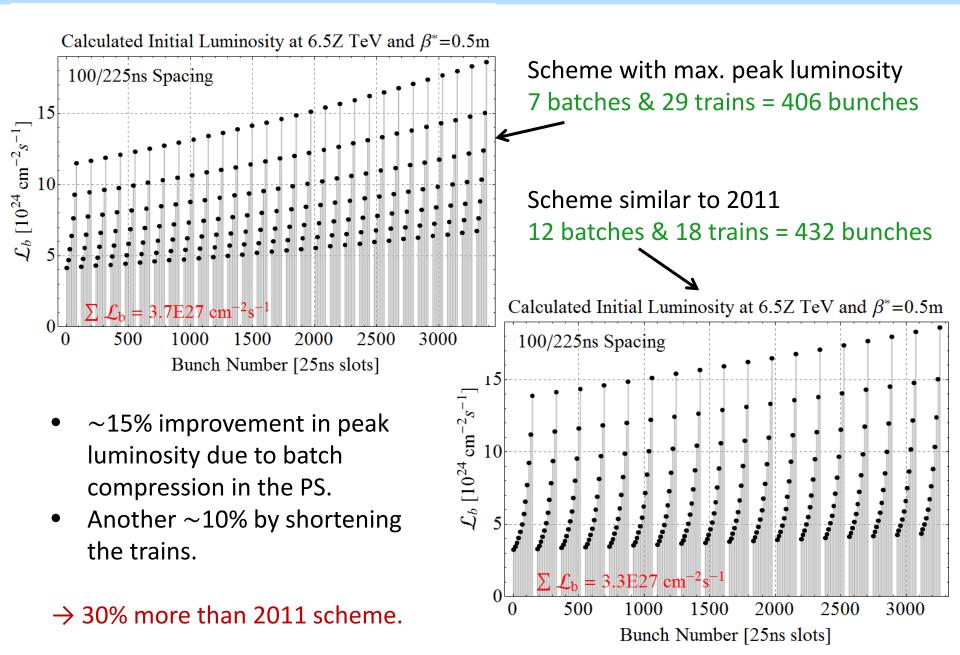
Parameters to be optimised:

- 1. Set number of PS batches per LHC train.
- 2. Set number of LHC trains.

Intensity Scaling

Measured Bunch Intensities and Scaling

	2011	2013	+40% out of LEIR				
LEIR pulse intensity [ions]	9×10^{8}	11×10^{8}	15.4×10^{8}				
Number of bunches per batch	2	2	4				
Intensity per future LHC bunch [ions]	4.5×10^{8}	5.5×10^{8}	3.9×10^{8}				
Injected intensity per bunch into LHC [ions]	1.24 × 10 ⁸ (27%)	1.6 × 10 ⁸ (29%)	1.1 × 10 ⁸ (29%)				
Intensity in Stable Beams [ions]	$1.2 imes 10^8$ (96%)	$1.4 imes 10^8$ (87%)	$1.0 imes 10^8$ (96%)				
Transmission LEIR \rightarrow LHC SB	26%	25%	27%				
Intensity scaling factor for best	1	1.28	0.88				
transmission		^	^				
Intensity scaling factor for best transmission means:							
29% from LEIR to LHC injection,	taken for all cases	taken for all					
96% from LHC injection to Stable \rightarrow 27% from LEIR to LHC Stable Be	ladled with "2013cases ladledperformance".with "+40%						


Estimates for after LS1 – 2011 Scheme, scaled Nb

2011 Filling Scheme	@ E = 6.5	5Z TeV E = 6.5 Z TeV
	$\beta^* = 0.$ $F_{Nb} =$	
Spacing PS [ns]	200	
Spacing SPS [ns]	200	Calculated Initial Luminosity at 6.5Z TeV and $\beta^*=0.5m$
No. bunches/PS batch	2	200/200ns Spacing
No. PS batches/train	12	15
No. LHC trains	15	
No. bunches/beam	358	팅 10
2011 filling scheme 2013 bunch performa 2011 injection→ stabl	nce	$\sum_{n=1}^{\infty} \mathcal{L}_{b} = 2.8E27 \text{ cm}^{-2} \text{s}^{-1}$
Max. peak luminosity (AT $2.8 \times 10^{27} \mathrm{cm}^{-2} \mathrm{s}$	• • •	0 500 1000 1500 2000 2500 3000 Bunch Number [25ns slots]

Estimates for after LS1 – 100ns Batch Compression

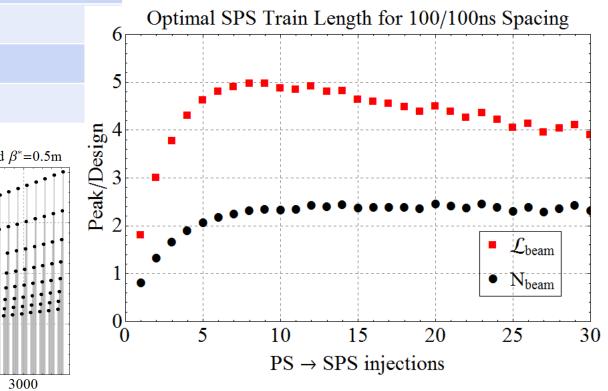
Batch Compression	@ E = 6.5Z TeV β^* = 0.5m F_{Nb} = 1.28		 Filling schemes are not exact! Takes into account: Not more than 40% of the SPS is filled. 3.3µs abort gap. 900ns LHC kicker gap. 				
Spacing PS [ns]	100						
Spacing SPS [ns]	225		 All bunches are colliding with an equal 				
No. bunches/PS batch	2		partner.				
No. PS batches/train	7 / 9		Optimal SPS Train Length for 100/225ns Spacing				
No. LHC trains	29 / 24	4					
No. bunches/beam	406 / 432	2					
max. Luminosit ma	x. Intensity	Peak/Design					
2013 bunch performa 2011 injection \rightarrow stabl		1	• \mathcal{L}_{beam} • N_{beam}				
Max. peak lumino $3.7 \times 10^{27} \text{ cm}^{-2}$		0	$\begin{array}{cccccccc} 0 & 5 & 10 & 15 & 20 & 25 & 30 \\ & & & PS \rightarrow SPS \text{ injections} \end{array}$				

Estimates for after LS1 – Optimisation

Estimates for after LS2

Increasing the Luminosity by increasing the total number of bunches.

- 1. Reduce bunch spacing within batches.
- 2. Decrease SPS kicker rise time to reduce batch spacing.
- 3. Increase intensity out of LEIR by 40% and perform bunch splitting in the PS.


PS Spacing [ns]	SPS Spacing [ns]	No. Bunches/PS Batch	
50 or 100	225	2 (unsplit) or 4 (split)	Present with batch compression (100ns)
50 or 100	100	2 or 4	 Baseline Batch compression (50ns) with split bunches
50 or 100	75	2 or 4	
50 or 100	50	2 or 4	Slip stacking with split bunches

Estimates for after LS2 – 100/100ns Baseline Scheme

50/50ns Scheme PS Bunch Splitting	@ E = 7Z TeV β^* = 0.5m F_{Nb} = 1.28		V
Spacing PS [ns]	100		V
Spacing SPS [ns]	100		v
No. bunches/PS batch	2		
No. PS batches/train	8	6	(
No. LHC trains	36	5	-
No. bunches/beam	576	5	
Calculated Initial Luminosity at 20	7.Z TeV and $\beta^*=0.5$ m	besign	

With 2013 transmission from Inj. to SB: $L_{peak} = 4 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-2}$

With 2011 transmission from Inj. to SB: $L_{peak} = 5 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-2}$

Bunch Number [25ns slots]

1500

2000

2500

0

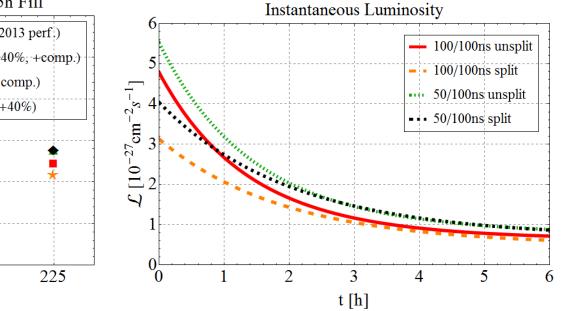
15

 ${\cal L}_{b} \ [10^{24} \ {
m cm}^{-2} {
m s}^{-1}]$

100/100ns Spacing

500

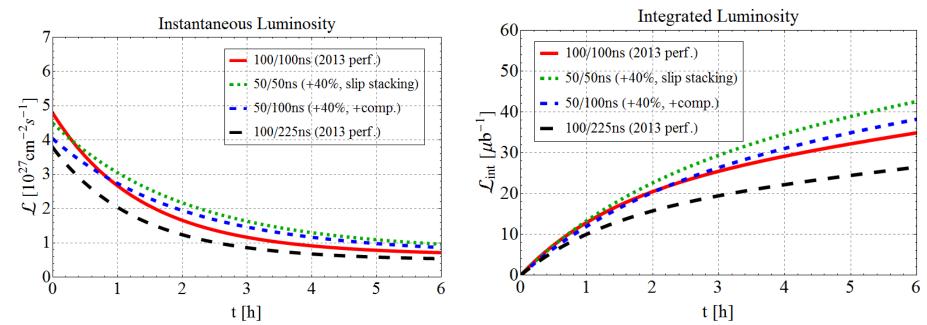
1000


Estimates for after LS2

Potential Peak Luminosity for SPS Kicker Scenarios ■ 2b/100ns (2013 perf.) ▲ 4b/50ns (+40%, +comp.) $\mathcal{L}_{
m peak} \; [10^{27} {
m cm}^{-2} {s}^{-1}]$ 2b/50ns (+comp.) 4b/100ns (+40%) 2 **Peak Luminosity** 0 50 75 100 150 225 SPS kicker gap length [ns] Potential Integrated Luminosity per 5h Fill 60 2b/100ns (2013 perf.) 50 ▲ 4b/50ns (+40%, +comp.) ◆ 2b/50ns (+comp.) $[10^{-27} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$ 40 $\begin{bmatrix} 40\\ -qn \end{bmatrix} 30\\ T 20 \end{bmatrix}$ ★ 4b/100ns (+40%) 5 10 Integrated Luminosity 0 50 75 100 150 225 SPS kicker gap length [ns]

Peak luminosity higher for 100ns PS spacing with unsplit bunches.

- \rightarrow Higher brightness bunches decay faster.
- → Higher integrated luminosity for 50ns PS spacing with split bunches.


50/100ns split \rightarrow ~1000 bunches/beam 100/100ns unsplit \rightarrow ~600 bunches/beam

M. Schaumann, LIU-Ions

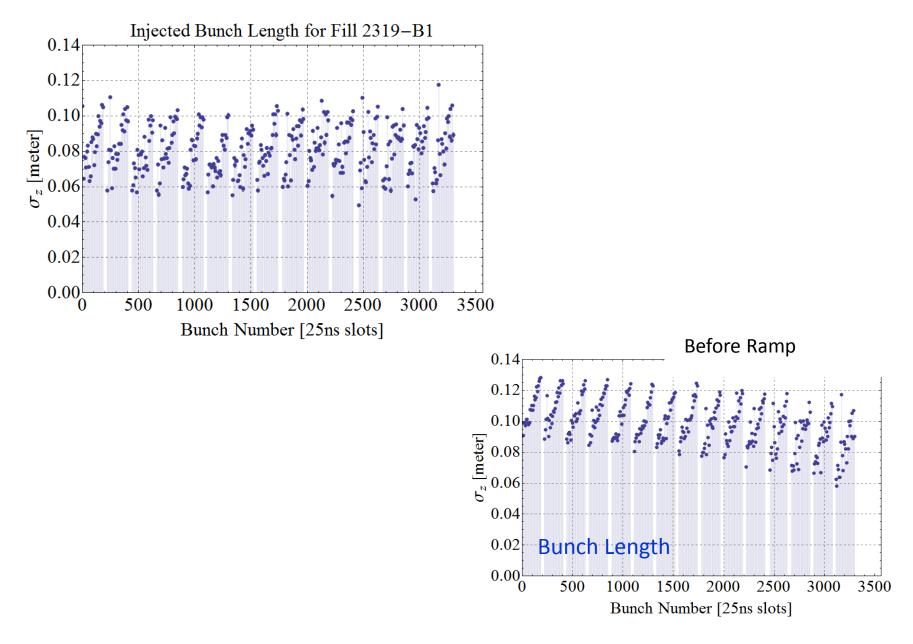
Luminosity Evolution for main Upgrade Scenarios

Takes into account different initial bunch luminosities and bunch luminosity decay times.

Scenario	L_{int} after 3h [μb^{-1}]	L_{int} after 5h [μ b ⁻¹]	L_{int} in run with 30 $ imes$ 5h	
100/225ns	19	25	0.8 nb ⁻¹	Present
100/100ns	25	32	1.0 nb ⁻¹	Baseline
50/50ns	29	39	1.2 nb ⁻¹	Slip Stacking
50/100ns	26	35	1.1 nb ⁻¹	Batch compression

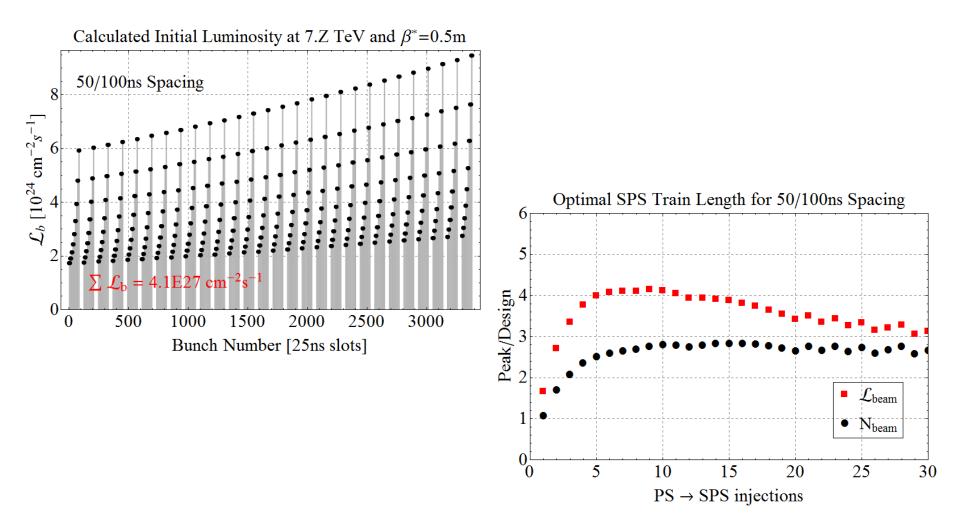
Summary

- Strong bunch degradation in the SPS/LHC, due to accumulation process of the bunches/trains.
- Empirical model for the L_{b,peak} depending on the bunch position inside the train/beam (i.e. SPS/LHC injection plateau length per bunch) was built based on 2011 ATLAS luminosity data.
- For final decision integrated luminosity has to be considered as well.
- Model can be refitted to SPS and LHC performance in the run-up to a given Pb-Pb run to re-optimise the length of the SPS trains.

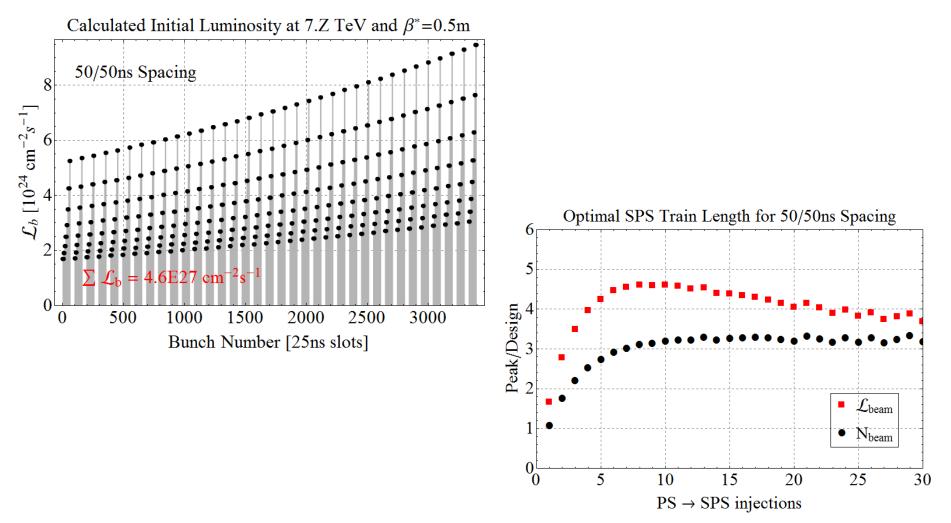

Scenario	L _{peak} [Hz/mb]	<i>L_{int}</i> after 3h [μb ⁻¹]	<i>L_{int}</i> after 5h [μb ⁻¹]	L_{int} in run with 30 $ imes$ 5h	<i>L_{int,run}</i> (Hubner Factor)	Years to integrate 10 nb ⁻¹	
200/200ns	2	15	21	0.64 nb ⁻¹	0.64nb ⁻¹	15.6	2011 @ 7Z TeV
100/225ns	3.7	19	25	0.8 nb^{-1}	1.2 nb ⁻¹	12.5	Present
100/100ns	5.0	25	32	1.0 nb ⁻¹	1.6 nb ⁻¹	10	Baseline
50/50ns	4.6	29	39	1.2 nb ⁻¹	1.5 nb ⁻¹	8.3	Slip Stacking
50/100ns	4.1	26	35	1.1 nb ⁻¹	1.3 nb ⁻¹	9.0	Batch Compression

THANK YOU FOR YOUR ATTENTION

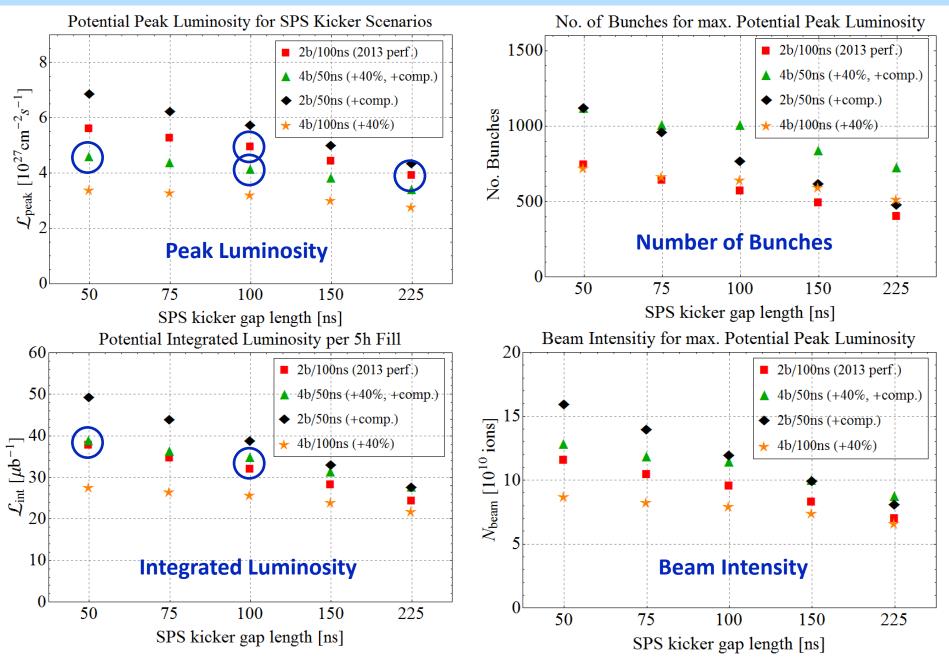
Design & Current Performance


	Collision (Design)	Injection (2011)	Collision (2011)	Injection (2013)	Collision (2013)
Beam Energy [Z GeV]	7000	450	3500	450	4000
No. lons per bunch $[10^8]$	0.7	1.24 ± 0.30	1.20 ± 0.25	1.67 ± 0.29	1.40 ± 0.27
Transv. normalised emittance [μ m. rad]	1.5		1.7 ± 0.2	1.3 ± 0.2	
RMS bunch length [cm]	7.94	8.1 ± 1.4	9.8 ± 0.7	8.9 ± 0.2	9.8 ± 0.1
Peak Luminosity [10 ²⁷ cm ⁻² s ⁻¹]	1		0.4 ± 0.1		p-Pb

Bunch-by-Bunch Differences after Injection (450Z GeV)


50/100ns Scheme

- 40% more out of LEIR
- Splitting into 4 Bunches /PS Batch
- Batch compression to 50ns



50/50ns Scheme

- 40% more out of LEIR
- Splitting into 4 Bunches /PS Batch spaced by 100ns
- Slip stacking in the SPS

Estimates for after LS2

