

Simulation of BFPP measurements at RHIC

R. Bruce*, S. Gilardoni, J.Jowett CERN - AB/ABP and *Lund University RHIC Collaborators: Angelika Drees, Wolfram Fischer

Motivation

- BFPP might limit luminosity for Pb⁸²⁺ in the LHC
- Accurate and reliable simulations as well as a good understanding of the underlying physics are necessary in order to predict the behavior in the LHC
- Experiment at RHIC gives an excellent opportunity to benchmark the tools and models used for the LHC
- First experiment ever on a high energy collider that measures BFPP
- RHIC experiment could confirm predicted cross section for the BFPP process

Bound Free Pair Production (BFPP) for nominal luminosity in the LHC

impinging on beam

screen

J. Jowett

Energy deposition in the median plane

Preliminary result for the LHC: Magnet is not likely to quench although the quench limit is not well known

BFPP experiment at RHIC

- Cu²⁹⁺ collisions at 100 A GeV
- BFPP proceess: $Cu^{29+} + Cu^{29+} \rightarrow Cu^{29+} + Cu^{28+} + e^+$
- Possibility to observe BFPP due to larger momentum deviation than for Au-Au run. Lower cross section than for Pb-Pb means no danger for quench
- PIN diode detectors located outside the cryostat around the expected impact point
- Secondary shower particles measured

Simulation setup

- MadTomma tracking shows impact point and angle
- FLUKA simulation of the shower gives secondary particles emerging outside the cryostat => expected detector signals

Uncertainties in tracking:

- Optics errors, Orbit deviations shown by BPMs (hard to find fit to measured orbit). 1mm offset @ impact likely
- Horizontal beam pipe misalignment:a few 0.1 mm offset likely, 1mm offset possible

MadTomma Tracking in RHIC lattice

- With orbit correctors the expected impact point of the BFPP beam is 136.4 m, without 135.5 m. Magnet errors unknown.
- A 1mm orbit or pipe displacement @ impact moves the impact point another 35 cm away from the IP.
- A 1mm orbit displacement @ IP moves the impact point ±1 m.
- A 0.1 mrad angle @ IP moves impact 20 cm towards IP

Shower simulations

- RHIC dipole implemented in FLUKA
- Shower simulated with initial conditions from the tracking
- Energy deposition in continuous silicon blocks outside the cryostat scored

Simulation results

6.8E-01 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 1.0E-09 1.0E-10 2.1E-13

Experimental results

Clear correlation between luminosity and PIN diode count rates!

25

Results (cont.)

- In second stage PIN diodes moved closer around the observed impact point
- Longitudinal profile
 determined

Maximum observed at s=140.5 m, which does not agree exactly with simulation, count rates ~0-20 Hz

Comparison between simulation and data

- Without taking the unknown magnet errors into account, all the other error sources mentioned add up to a total error bar of 2.35 m on the impact point.
- Very good agreement on the order of magnitude of the count rates.
- Displacing the impact point to 138 m reproduces fairly the shape of the measured energy deposition => The primary tracking predicts the impact point 1.6 m closer to the IP, which is within
 Interpret the error bar.

Conclusions

- There is a clear correlation between luminosity and measured signal in the PIN diode: First measurement ever of BFPP on a high energy collider
- The simulation reproduces well the measured data. The predicted impact point is 1.6 m off, which is within the error bar.
- We can trust the corresponding simulations for the LHC if we do the same error analysis
- Cross section seems to be on the right order of magnitude

Thanks to RHIC collaborators: Angelika Drees Wolfram Fischer